

Results of the 2025 CQ WW DX SSB Contest

By John Dorr, K1AR

e-mail: cqk1ar@gmail.com

“The CQ WW brings great signals, new friendships, and lasting memories across the airwaves.” – YC7NKN

In today's fast-paced world, it's noteworthy to identify any institutional activity that has lasted for 77 continuous years. The CQ WW contest is one of those institutions with activity in the 2025 edition reaching the highest levels ever recorded.

When I describe activity levels, there are some incredible metrics that boggle the mind. Some of them include:

- Receiving 10,576 logs for a record high (65.6% received in the first 48 hours after the contest)
- Logs representing a total of 5,148,149 QSOs
- The ability to cross-check 91% of all QSOs against other logs
- Median accuracy rates in submitted logs averaging 97.3% (well done contestants!)
- 324 record scores across all categories (see <https://cqww.com/recordsthisyear.htm>)

Many of you have expressed that reading soapbox comments from other competitors is enjoyable and often a helpful contributor to future operating plans (all comments are available at:

<https://cqww.com/soapbox.htm?yr=2025>) A few representative samples follow below:

“This was my first real participation in CQWW SSB. As a new ham with only two years of experience, I truly enjoyed this contest and learned a lot.” – 9K2ES

“Thanks for sponsoring the best DX contest -- what a blast! Already blocking out my weekend for next year.” – AC4HI

“A contest to remember.” – OH1VR

So, without further delay, let's get into the results of the 2025 CQ WW SSB contest!

Ten meters was the star of the show this past year as Cycle 25 continues to deliver! Do you need a reminder? Take a look at Photo 1, which is a waterfall shot of 28 MHz from HD8R. Not surprisingly, we received 1356 single-band 10 meter entries alone!

Photo 1 – 10M band was alive and kicking at HD8R, with signals from 28.200 up to 29.300.

Single Operator All Bands

The world single-operator race in this year's event included an amazing effort by Braco, E77DX, who piloted the EF8R superstation to a record 25.7M points (see the EF8R sidebar later in the results). The previous high score of 25.6M set by N5TJ from EA8BH, had stood since 1999 – a 26-year rock in the records list. Braco had some stiff competition from Tom, 8P5A (W2SC), and Manu, HD8R (LU9ESD), who posted 17+ million scores. In the end, however, Braco stayed the course on the strength of a great location/station and sheer grit.

In another surprising turn of events, the world low-power, single-operator category was won by a U.S. entry, Ed, N1UR, who churned out a 4.9

million point result, nearly doubling his nearest competing effort by Dick, PC0A at 2.8 million.

Jeff, K1ZM, returned to the single-operator QRP scene with a final tally of 1.8 million points from this top-notch Cape Cod location. In case you are wondering, Jeff amassed over 1,400 QSOs or 29 QSOs/hour on average with only five watts on SSB as his return-on-investment in the contest!

The world Single-Operator Assisted race is always intense and this year was no exception. There was only a 12% spread amongst the top scorers with Sergii, UT5UDX, taking the top slot from ER4A and a score of 11.6 million points. It took a final score of 7.7 million points by SO9I (SQ9ORQ) just to make the Top Ten world high scoring box in this one!

There was an unusually large gap in scores with the 2025 U.S. single-operator, all band entries. Krassy, K1LZ, demonstrated that location and big antenna hardware makes a huge difference when posting his 9.3 million point score. In a category that is typically dominated by “East Coast” competitors, there was only one other Zone 5 entry from Rich, W3RJ. Steve, N2IC, delivered an impressive 6.6 million result from New Mexico, with W9RE and K5TR right behind from Indiana and Texas respectively. Great showing by everyone!

Single Band Record

There were a number of amazing single-band scores this year, but perhaps most notable was the 4.3 million point result achieved by Louis, DK4EE, at the D4C station. Be sure to check out Louis’ story later in the results. The adversity that was overcome in D4 will be something to marvel at for years to come. Working over 7,200 QSOs on a single band is also not to be ignored!!

Multi-Operators

As challenging as the single-operator category can be, multi-operator execution is often even more difficult. The logistics are even more intense as team captains coordinate operators, equipment, antennas, and simply, as a team, making it all work! The Multi-op, Single-transmitter landscape was dominated by one of the best contest teams ever assembled at CQ9A. A combination of European and U.S. operators (all world-class ops on their own)

posted an amazing 33.7 million score, beating long-time regular V47T (N2NT, K4ZW and K5ZD) who came in at 22 million. Many will agree that operator skill was the key to success for all the top results in this growing category.

Speaking of monster operations, the Multi-Two group were led by two gigantic scores, CR3A, posting a record-setting 41 million points and contest regular P33W who was hot on their tail at 37.7 million. These two entries alone logged nearly 31,000 QSOs!

And, then there were the giants – world, Multi-Multi operations. To no one’s surprise, CN3A did it again. While the team has their basic station infrastructure in place, there is still an enormous list of logistic challenges to execute an operation of this size with Europe-based operators that live thousands of miles from Morocco. In the end, Team CN3A logged 19,741 QSOs (that’s 411 QSOs/hour for the entire contest) resulting in a final score of 53.6 million! The U.S. landscape was led again by the team from K3LR who delivered a #3 world-high score of 33.2 million points to win the top prize.

Youth and Rookie Overlays

Finally, let’s acknowledge the results of our Youth and Rookie entries. Hagi, JJ1AHS, earned an amazing 4.2 million point Youth score while operating from JG1ZUY. Keep an eye on this guy in the years to come. And, Rookie operator, Yannic, DL6RY, dominated the field giving Agustin, LU2DUV, at LT3E some challenging competition with a result of nearly 4 million points.

What was Your Category?

The CQ WW contest is rich in category offerings. If you peek at the individual scores or plaque listings, you’ll note that there are nearly 200 category awards available for winners across the spectrum of single ops through multi-operators. It’s always interesting to dive into the details and learn where the action is taking place – overall and from a geographical perspective.

Perhaps not a huge surprise is that the dominant operator category continues to be Single-Op Unassisted Low Power with over a third of all-band logs falling into this group, a slight

increase from last year. The use of assistance continues to be extremely popular for single ops as represented by 41.2% of all entries. This is an increase of 3% from last year. However, it's also worthy of note that 50.9% of received logs operated in the contest on their own! This

essentially confirms the working assumption that our community is split on the use of spotting in DX contests – at least for the CQ WW.

Category	AF	AS	EU	NA	OC	SA	ALL	% of total
SOAB HIGH ASSISTED	4	110	626	679	28	34	1481	20.3%
SOAB HIGH UNASSISTED	9	135	315	315	62	22	858	11.8%
SOAB LOW ASSISTED	7	110	795	451	37	72	1472	20.2%
SOAB LOW UNASSISTED	16	286	1395	731	198	96	2722	37.3%
SOAB QRP ASSISTED		8	33	5	6	2	54	0.7%
SOAB QRP UNASSISTED		25	71	16	12	4	128	1.8%
MULTI-2	4	16	57	36	7	1	121	1.7%
MULTI DISTRIBUTED		2	8	1	2	4	17	0.2%
MULTI-MULTI	1	4	27	12	5	2	51	0.7%
MULTI-SINGLE HIGH	3	24	127	44	9	15	222	3.0%
MULTI-SINGLE LOW	1	38	93	13	13	13	171	2.3%
Totals	45	758	3547	2303	379	265	7297	100.0%
% by Continent	0.6%	10.4%	48.6%	31.6%	5.2%	3.6%	100.0%	

Table 1 – 2025 CQ WW SSB Logs by Entry Class (single band excluded)

)

Impressive Accuracy Numbers!

Every year, I like to highlight those operators that have demonstrated extraordinary accuracy in their log submissions. You'll note in Table 2 there is a list of some of the best operators in the contest with error rates of less than 1% (note: this is based on single-op, unassisted logs with more than 1000 QSOs). For example, Tom, W2SC, delivered a 1.0% error rate, meaning there were only 102 bad contacts (e.g., busted calls, not-in-log, bad exchanges) out of 10,733 contacts in his log – simply amazing.

One final observation should be made. While there were 18 logs that made this esteemed list, that number is significantly lower than last year's total of 37. One can speculate that the proliferation of SO2R and 2BSIQ operating may be a contributor to the reduction. Or, the simple amount of QRM being generated by crowded bands under amazing conditions. Maybe you'll make the list next year?

Entrant (Opr)	Continent	Power	Raw QSOs
8P5A (W2SC)	NA	HIGH	10,733
HP3/VE3DZ*	NA	HIGH	6,527
WP3C	NA	HIGH	4,976
N2IC	NA	HIGH	4,292
DS1TUW	AS	HIGH	3,704
OM7K (OM7RU)	EU	HIGH	3,623
DJ5MW*	EU	HIGH	3,162
EA4KD	EU	HIGH	2,854
WH7T (WH7W)*	OC	HIGH	2,775
PC0A	EU	LOW	2,760
PR2K (PY2UD)*	SA	LOW	2,107
UP7L (UN6LN)	AS	LOW	1,439
OK2MBP	EU	LOW	1,225
WW4XX (LZ4AX)*	NA	LOW	1,161
JR2GRX	AS	LOW	1,154
Z35M	EU	LOW	1,110
ES6RW	EU	QRP	1,082
UA1ANA	EU	HIGH	1,073

* Repeat from 2024

Table 2 – Accuracy Single-Op All-Band Unassisted Winners for the 2025 SSB CQ WW

A Few Musings from the Director

As you might imagine, there are many factors that go into the process of log checking. And, despite what a few of you may think, the goal is not exclusively to weed out cheaters. Rather, the objective is to ensure the final results are accurate and reflect what really happened in the contest. Put another way, did everyone work and accurately log what transpired for every contact they made?

In the course of executing the checking process, all logs are rescored to reflect the above. In a very limited number of cases, further action is sometimes required. These actions range from reclassification of logs to disqualification. To be clear, under my watch, the act of disqualifying a log is an action of last resort. No one on the CQ WW Contest Committee takes delight in such a decision. When rules violations are identified, they most often result in a written warning as a next step. An example might be a log that has a small number of identified self-spots but not enough to warrant a more extreme action. In yet other cases, entries are sometimes reclassified such as an unassisted log when a small number of QSOs appear to have based on spotting assistance.

Finally, there is the big elephant in the room – disqualification. It's very important to realize that not all disqualification actions are the result of someone cheating. In many (or perhaps even most) cases, an important rule has been unintentionally violated that gives that entry an unfair scoring advantage.

You'll note that in this year's final scores, a number of stations were disqualified for self-spotting. While some of these entries appeared to have involved intentional deception (e.g., using multiple calls to self-spot, all from the same IP address), the majority simply didn't closely read the rules and assumed self-spotting was allowed. Unlike some other contests, self-spotting is **not** allowed in the CQ WW, nor is that likely to change in the near future. Knowing the rules is part of the contest. We observed 129 entries in the 2025 SSB contest where self-spotting was taking place!

The bottom line is that most of your peers play fairly by the rules. We can take some solace in knowing the playing field is fair and that your committee is doing everything it can to ensure it stays that way!

Well Deserved Acknowledgements

As you might imagine, with over 10,000 SSB logs to accept, process, and report upon, the effort to produce the results you are reading is a daunting task. It simply would not be possible were it not for the support and contributions of the following world-class contesters: AA3B, Bud Trench; CT1BOH, José Nunes; EA4KD, Pedro Vadillo; F6BEE, Jacques Saget; G0MTN, Lee Volante; HA1AG, Zoli Pitman; IK2QE1, Stefano Brioschi; JH5GHM, Katsuhiro (Don) Kondou; K1DG, Doug Grant; K1EA, Ken Wolff; K3LR, Tim Duffy; K3WW, Charles Fulp; K5ZD, Randy Thompson; KR2Q, Doug Zwiebel; N3QE, Tim Shoppa; LA6VQ, Frode Igland; N9RV, Pat Barkey; OH6LI, Jukka Klemola; PA3AAV, Gert Meinen; RA3AUU, Igor (Harry) Booklan; S50A, Tine Brajnik; UA9CDC, Igor Sokolov; VE3EJ, John Sluymer; VK2IA, Bernd Laenger; and YO3JR, Andrei (Andy) Ruse.

While everyone on the committee provides an invaluable role, I also want to highlight the members of this esteemed group that go above and beyond, spending countless additional hours offering unique skills and perspectives. Without their extraordinary contributions, the results you enjoy would simply not be possible. This group includes: AA3B, F6BEE, K1EA, K3WW, K5ZD, KR2Q, N3QE, OH6LI, VE3EJ, and YO3JR.

While the Cycle 25 peak may be waning according to some, you would never know it by the conditions we experienced in the 2025 contest. I expect the 2026 WW will also be filled with huge numbers of log submissions, record scores and most importantly – loads of fun for all! Hope you can join the party in October!

73, John, K1AR

CQ WW Contest Director

Stories from the 2025 SSB CQ WW

Youthful Contesting from Hungary – HA1BB

This year's CQ WW SSB contest was another enjoyable chapter in what has become a regular tradition for me. I've participated in previous years with good results, so I entered this year with a clear sense of what to expect and what I hoped to achieve. As always, I operated from my father's (HA1RB) station, where during the summer we upgraded the 160/80m "wires" to a Kelemen dipole. Aside from the new low-band antenna, the rest of the setup remained the same: a Mosley PRO 67B for the rest of the bands, and a YAESU FTdx5000 running 100 watts.

Propagation and band conditions were excellent, which added to my excitement. Most of the bands stayed open far into the night, keeping the intensity high and offering plenty of opportunities to work more multipliers and QSOs. Throughout the weekend, QRM was constant. I believe the exceptional propagation made for stations everywhere – often making it challenging at times to pull out weaker calls.

My initial goal was to make at least 1000 QSOs and 1,000,000 points. I knew this could only be achieved if I intentionally searched for multipliers and 3-point QSOs. Luckily, I managed to exceed my goal! Ten meters made the difference and was one of the bands that surprised me the most. It stayed open far into the night (my local time), allowing for many QSOs on that band.

Overall, I'm quite pleased with the results I achieved. I had a wonderful time participating in the contest. Just like in previous years, the contest provided a chance to push myself technically and strategically. I'm already looking forward to returning next year!

Photo 3 – First licensed in 2022, this is Bence, HA1BB, on his way to making 1M+ points in the CQ WW for the first time.

Operating from the Dream QTH of the Galápagos Islands – LU9ESD/AC1NU

One more for the books – another radio party from one of the most magical places on Earth.

Up until a month and a half before the contest, I had no clue I'd end up in the Galápagos again. The plan, however, was to have a real station this time — solid antennas, a proper setup, and being ready to compete. But, as usual, life happened, plans changed, and what was supposed to be a "quick and easy" operation turned into two muddy weeks inside the clouds at 630 meters ASL.

When I arrived, half of the antenna field looked like a post-storm scene: broken bamboo poles, fallen verticals, and cows happily chewing on radials. Of the six existing antennas, only one worked. "Not completely defeated," I thought — just 85%.

So began the rebuild. Between fog, wind, and a level of humidity that would make any piece of equipment cry, I somehow managed to resurrect everything. The highlight? Combining German fiberglass poles from Spiderbeam with local bamboo to create a brand-new hybrid species: the now legendary "Spamboo." It became the star of the show and it worked!

Edgar, K2IN, arrived just in time with sunshine, an Acom 2000A, some of the missing gear and the muscle needed to raise the last masts. By

Tuesday, everything was up and running. At one point, I even managed to stick half my body inside a suitcase to solder wires while trying to block the wind; not exactly a dignified image, but thankfully there are no neighbors around to witness the show.

The contest itself was madness. I've never seen 10 and 15 meters in such amazing shape with a wall of signals from end-to-end. The pileups were pure chaos, the kind that makes you question your sanity halfway through the contest but also reminding you why we love this sport. I would have liked to spend more time running 2BIQ (note the missing "S" for Synchronized — we're talking SSB here), but the pileups were brutal and extremely messy, especially with Europe.

I ended up with 9,730 QSOs, which I honestly considered a miracle given the antennas available, which would be a perfect POTA setup, but definitely not a competitive contest station.

Thanks to Edgar K2IN and my friends LU8EOT and LU5DX for keeping the spirit alive and to everyone who took the time to just to give me a QSO.

If you want the full story (including the birth of the Spamboo), check out my detailed write-up on 3830scores.com or on my Facebook profile: Manu Siebert.

Photo 4 – Manu, LU9ESD, holding the HD8R Spiderbeam that was relocated to the top of the building terrace.

Photo 5 – A view of the HD8R SO2R operating position.

Photo 6 – Overall view of the HD8R shack.

Photo 7 – Some curious locals came by to see what Manu was doing there (nothing more than viewing the end of the HD8R NA Beverage).

Low Power Operating from the Canary Islands – ED8W (EA1BP op.)

My brief story begins by describing an unfortunate visit to the shack by Murphy at 2353Z, only seven minutes before the contest. The fuse in my amplifier blew (once before the contest and later near the end). Although the amplifier survived most of the weekend, I was given the unfortunate verdict that I would be running 80-100 Watts in the last few hours of the contest.

As a single-band 20M entry, I enjoyed fantastic propagation to the U.S. as I didn't move from my run frequency for the entire night!

Although I didn't break the scoring record, I'm very pleased to win the World High title. I only missed two zones and several countries mostly because I was running 90% of the time. There were only occasional times when I explored the band, only to encounter huge pile-ups and missed multipliers.

In the end, even with a successful victory, there always opportunity to improve – better decisions to run vs. search, sleep management (and pre-contest preparation), back-up equipment, etc.

I want to offer a huge thank-you to my friend EA8DO who let me use his station. Even he could not physically help due a bad knee, he was a great supporter and incredible host – what a man!!

Photo 9 – A single beam antenna located in one of the best operating spots in the world makes for a winning score by EA1BP at ED8W.

Photo 8 – Miguel, EA1BP, ready to tear up the 20M band as ED8W in the 2025 CQ WW SSB Contest.

Operating Paradise from EF8R – E77DX

If someone had asked me at the end of September where I would be for 2025 CQ WW DX SSB, I would have said E7DX.

While attending the IBER Radio event in Ávila, Spain, I had the opportunity to speak with Juan, EA8RM. I knew that Dan, N6MJ, would be at EF8R for CW, but plans for SSB were unclear. In the end, Juan offered me the opportunity to operate from his QTH, although the station was far from being ready for the contest.

Upon returning to Vienna on Monday and after several phone calls, my wife Julia and I decided to spend a few days in EA8. My plan was to visit the station and assess what needed to be done for the contest. This trip was crucial; without it, I would have underestimated the workload required.

It quickly became clear that the amount of work involved was too much to tackle alone in just a few days before the contest. I spoke with a few friends, and we assembled a team for EA8 during the Istra Contest conference in Poreč, Croatia. Flo OE3FTA, Vlado, E70T, and Fudo, E72T, were willing to join in on this ambitious endeavor on short notice.

A lot of organizing was required, and it was inspiring to experience many friends being ready to lend a hand. My goal was to rebuild the station for CQ WW SSB and ensure it was ready for N6MJ's follow-up operation in the CQ WW CW contest. The preparations were extensive, and I dedicated all my free time to making this happen. In the end, we packed six bags weighing 32 kg each, along with six pieces of hand luggage and three personal items.

Our luggage contained tools, spare parts, climbing equipment, ropes, two radios, switches, cables, computers, headphones, and more. Vlado, E70T, arrived by bus in Vienna at around 5:00 AM on Friday, October 17. Together with Flo, OE3FTA, we drove to Munich, where we met Sven, DJ4MX, to add some additional hardware to our luggage.

Once we arrived in EA8, we picked up a rental car, which initially turned out to be too small for our extensive luggage (a story for another day)! We met Juan, EA8RM, at the station and the

challenging work began. Despite several issues, we managed to repair most of the equipment, including the water pump for the house, the antennas, and back-up generator.

Unfortunately, some of the crank-up towers were irreparably damaged, preventing us from raising them to maximum height. However, most of the outdoor work was completed by Tuesday. The next morning, strong winds caused one of the top-load wires of the 160m antenna to break. Regrettably, while lowering the 29m high antenna, we encountered additional mechanical issues. It seemed that there was always something to do or repair. In the days that followed, we repaired the RX antennas and completed the contest setup inside the shack. Band conditions were excellent, and the antennas performed exceptionally well.

My contest plan was straightforward: one radio to run as much as possible, with some S&P for the usual suspects. In the morning, focus on 160/80/40 meters after EU sunrise, and later in the night focus on 15/10m when the bands were less crowded, aiming to move every multiplier I could right from the start of the contest.

During the contest, aside from one issue with the backup PC, everything ran smoothly. My biggest challenge before and during the contest was lack of sleep and extreme fatigue. The workload prior to the contest had been enormous, with little time to rest. The Friday before the contest was my only chance to catch up on sleep. I managed to operate for the full 48 hours, leaving my chair only once on Sunday morning for a quick bathroom break.

The contest began for me on 20 meters, where I achieved my best hour. I logged 6,574 QSOs and amassed 12.7 million points in the first 24 hours, which was promising. During this chaos, I also was able to pass 120 QSOs to other bands, mostly multipliers. A memorable moment was passing Kazu from 3B9CW, from 40 to 10 meters in just two minutes, which netted me four double mults.

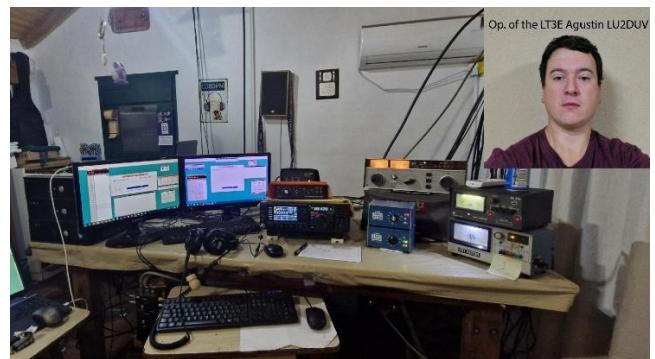
On Monday, we lowered all the antennas, dismantled my setup, and prepared the station for Dan, N6MJ. By Tuesday morning, we packed everything up and departed Gran Canaria, flying to Munich.

I would like to express my gratitude to Juan EA8RM for his support and the opportunity to operate from EF8R. Special thanks to Vlado, E70T, Fudo, E72T, and, of course, Flo, OE3FTA for being the biggest contributors. Without their help, none of this would have been possible.

Photo 10 – What a team of E70T, E72T, OE3FTA, and E77DX that made the dream of EF8R possible in the 2025 CQ WW contests.

Photo 11 – E77DX sitting at the helm of EF8R.

A Quick View of Operating from Argentina (LT3E) – LU2DUV


I was thrilled to participate in my first CQ WW SSB since I have grown to really like contests. I was even more pleased with the final result, although there were a number of operating errors along the way along with several micro power outages. The LT3E station is in a rural area, which helps with the reception to have low noise from the city, but the energy grid is often unstable. Although I lost some QSOs along the

way, the generator was fortunately launched without a problem!

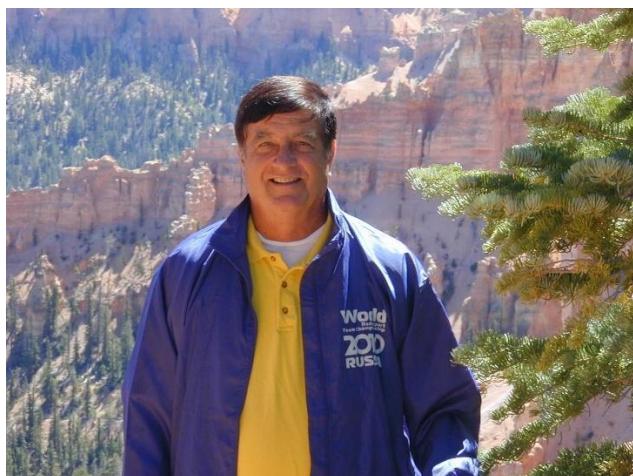
On Friday before the start of the contest, two ropes that are used to support some of the antennas were cut by the local calves and had to be repaired. Such is rural life in Argentina. Fortunately, I could still start the contest on time and had an amazing experience with 48 hours of operating fun!

A description of the LT3E station is as follows:

- Six element mono-band Yagi at 24 meters
- A stack of 2x5 element mono-band Yagi's installed at 15 and 25 meters respectively
- A stack of 3x5 element mono-band Yagi's installed at 37, 50 and 66 meters respectively
- Various wire antennas
- Transceiver Yaesu FTdx 3000D / TenTec Titan Linear Amplifier

Photo 12 – This is the impressive set-up at LT3E used by Agustin, LU2DUV. It looks like there is room on the wall for more contest plaques!

Photo 13 – This is the home of a Bourner (a bird species that inhabits this area) at LT3E, who chose to build his house on top of one of our rotators.


QRPing in the 2025 CQ WW SSB Contest – K1ZM

For the third year in a row, I tried my hand at entering the SOAB QRP category. Conditions were good but 10 meters, which is very important for QRPers, was not quite as productive for me as in 2024.

When operating QRP, 160/80/40 meters is extremely difficult. The upper bands are far more forgiving. Runs on SSB are only possible on 10 meters and sometimes on 15 meters. Everything else is "search and pounce." Put another way, SSB QRP operating is not for the faint hearted. It takes dedication and perseverance. There are, however, some thrilling moments, such as the times I was able to work some JAs on 20/15/10 at my sunset! In the end, a good location and decent antennas paid off (see below). I'm not sure I'll be return to QRPing next year – only time will tell.

K1ZM station details:

- Location: Cape Cod, MA with a saltwater take-off
- 2x FT1000D
- 160 - Vertical with 300 radials
- 80 - 2el BS/EF Vertical Array & 2el Endfire Array
- 40 - Stacked Yagis and Rotary Dipole
- 20/15/15 - 4el Yagi and 9el Yagi

Photo 14 – Jeff, K1ZM, who has never lost his passion for radio contesting!

Photo 15 – Nothing like the nearby salt water of the Atlantic Ocean to help the QRP operation of K1ZM.

Nothing Beats "One Happy Island" – P49Y (AE6Y)

This was the 215th (!!!) contest from the P40L/P49Y station in the 22 years it has been owned by John Fore, W6LD/P40L, and me. John and I typically alternate the major CW and SSB contests, with Ed, W0YK/P49X, generally taking the RTTY ones. Information for every contest is on our website at www.arubaqth.com. This was my fifth CQWW DX SSB in the classic overlay category, which I find more congenial as I get older (my 80th birthday was the Saturday of this contest). I had been thinking of doing a full-bore, 40-plus hour contest, as I had done for ARRL SSB earlier this year (well, 38 hours as it turned out in that one), but shortly before leaving for Aruba, I was notified that a case I was litigating in the California Supreme Court was being set for oral argument on November 4th. This is a very big deal for a lawyer and requires days of focused preparation. So, I decided that I wanted to come back after the contest with most of my mental facilities intact, and that suggested getting significant sleep during the contest (e.g., entering the 24-hour classic category once again).

One of the things I really like about radio contesting is the ability to put all your other cares and concerns aside for a week and just focus on the contest preparation and operation, but that wasn't possible this time. In fact, I took some work materials with me and spent all day on Monday after the contest working on my

argument – even cancelling out the usual dinner that I have after the contest with Cris (P43C) and Jean-Pierre Lauwers (P43A), so I could work undistracted on the case.

Some things I really enjoy about the Classic category from Aruba:

1. The radio/computer setup is simple, and you ignore the internet.
2. You can get a reasonable amount of sleep (though you may be tempted to get up and check the bands for mults after an hour of off time).
3. You can eat normally.
4. You can concentrate on high-rate hours and make 5,000 contacts in 24 hours!

An interesting development in Aruba has been the emergence of a new competitor, Lisandro Arends, P43L (see photo 15). He has been meticulously assembling a contest-ready ham shack on his property with several radios, including a beautiful FT1000D that used to be one of ours. It was not operational at the time, but Lisandro fixed it up and it is now the centerpiece of his shack.

Also on Lisandro's property is his astronomical observatory, which looks like a NASA control station. He has a reflecting telescope, and calls it Wind Hill Observatory. He is the president of a local scientific society called Space and Nature Aruba. A few years ago, my wife Sandra, who is a professor emerita at UCSC and an astronomer, gave a public lecture at one of their meetings attended by all the Government leaders.

Lisandro has a paddle and promises that he is learning CW, but for now he is a phone competitor, and he did very well as a 10 meter entry in the WW contest.

After the contest John Crovelli, W2GD/P40W, and I had a post-contest breakfast at a local pastry shop to compare notes. John, who was a single-op assisted, low power entry, and I both enjoyed the high bands, but bemoaned the high noise and lack of propagation on 160 and 80, which was particularly difficult for him since those complications added to the normal difficulty of being heard using low power on SSB.

But overall, we enjoyed the contest, and as usual, Aruba was a good place to be for this one.

Photo 16 – Brimming with Aruban enthusiasm for contesting, here is Lisandro, P43L, sitting at his fine operating set-up.

Multi-distributed Operating from Brazil – PV2K

We have enjoyed entering the unique Explorer category in the CQ WW for several years and were equally excited to give the new multi-distributed class a shot! The operation was basically carried out by six stations, strategically located across three Brazilian states within CQ zone 11. Two stations were in the state of Bahia (region 6 in Brazil), PY6HD and PY6RT, aiming for better performance on the lower bands, 40 and 80 meters but also taking advantage of good station performance on 20 meters as well.

Region (PP1 Espírito Santo) the PP1WW station operated by Wesley, with the main mission of hunting multipliers and, during shifts, dedicating the 15 and 20 m bands, being a great region for the 20 m band. Also in the same region, included our friend Atila, PP1KV, who provided support during the operation.

Manning the PY2 region (state of São Paulo) was PY2MP, our friend Eduardo, located in the north of the state, with excellent performance on 15 meters and also on 10 meters during off-peak hours and finally PY2KNK in the south with better performance on 10 meters as well as his

40 meter stacked antenna setup along with 80m and 160m wire Yagi's and verticals.

Our operation used N1MM+ software and we were connected through a VPN network (HAMACHI). The preparation had already been completed one month in advance, and in the last week before the contest we performed final network tests, with transmission blocks to avoid any breach of regulations, which worked perfectly without delay.

The start of the operation was smooth, each station on its own band, however we encountered inevitable problems as experienced from the PY6RT station with electrical problems as well as a bad splice in the 80 meter feedline. We also were challenged by RF interaction with the Internet at times.

In the end, however, we made a great effort to overcome our biggest competitor, the PR1T station, which had a much higher number of operators, and we succeeded!!!!

Congratulations to their team's fine effort as well!

It was a pleasure to participate in another operation like this (multi-distributed) and we look forward to the next one! Greetings from Team PV2K: PY2KNK, PY2MP, PP1WW, PP1KV, PY6HD, and PY6BA.

Photo 17 – Always enthusiastic, Leonardo, PY2KNK, is thrilled to be part of the PV2K operating team.

Photo 18 – The seriously robust antenna farm of PY2KNK contributing to the PV2K multi-distributed entry in the 2025 CQ WW contest.

Photo 19 – Now there's just a few awards adorning the shack of Bruno, PY6BA, one of the ops at PV2K.

Operating from 40 Zones—That's a Wrap! — OA4O (N5ZO)

It finally happened – my 40th and last zone to complete all WAZ operations in CQ WW DX contests. As it was my last zone, there weren't many station options available. Fortunately, my old friend Olli, OH0XX/ex OA4WW, and Pablo, ex OA4AI, helped and inquired with Radio Club Peruano, OA4O, in Lima about possibility of using the club's station for my operation. In short order, the club's president Oscar, OA4AMN, confirmed that club would provide the station for me. Good friends Aurelio, OA4AZP, and David, OA4YX, would help me to get set up for contest.

I flew to Lima well ahead of the contest, arriving one week early. In anticipation of my arrival, I had rented an AirBnB apartment that was within walking distance of the station. The station is located in center of Lima in an airport building, which once served as an old airport tower.

The OA4O station is well-equipped with two IC-7610 radios, two Acom 2000A amps, and two DB-36 SteppIR antennas installed on separate towers, albeit very close to each other. There is also 80 m loop antenna, the bottom of it very close to roof of the building and no 160 m antenna. Unfortunately, those SteppIRs are quite close to each other generating quite a bit hash from one radio to the other in most band combinations, so efficient use of a second radio was limited. The biggest issue at the station, however, was neighborhood urban noise generated by over 15 million people in the city, especially on the low bands (160-40 meters). Line noise was not totally surprising to me and I had been warned about it. I decided to not do anything for 160 and just to use the existing 80 meter antenna and take my chances with it.

There really wasn't much room for new antennas and there was also several cellular mobile operators antennas on the compound, some using same tower as one of the DB36 arrays, so I did not feel like stretching new wires at an already busy rooftop.

During the week before the contest I made few hundred CW QSOs with my own call OA4/N5ZO and also got on for 2 CWT sessions. Interestingly I received good signal reports but I always felt

that signals I heard were somewhat muted. I'm quite familiar with the IC-7610 transceiver but I reviewed the manual and menus to check if there was a setting I had forgotten. Everything eventually checked out.

There was big club meeting on Wednesday evening before the contest. Someone asked how many contacts I was expecting to make from the station after I had seen it. I replied that I would be happy with around 4,000 contacts. The existing Peruvian record was made by Olli in 2006 with 4982 QSOs and 7.4M points.

The contest began quite well and by the end of first day I was several hundred Qs ahead of Olli's midpoint Qs. It was evident that my 80 meter effort was going to be complete bust as I heard almost nothing there. Despite my assessment, a few stations mentioned to me on the high bands that I had good signal on 80 during the night, but that wouldn't be helpful if I couldn't hear. I pretty much gave up on 80 for second night. Interestingly, I felt that I was getting out quite well on 10 meters but not so much on 15. I tried to move a number of multipliers to 15 meters but, sadly, I just could not tell if the station had actually moved. At the end of the contest I had couple good hours on 15 meters and made it to 1000 Qs on that band. The bands were generally open to both US and EU at same time and it was always a strategic dilemma to determine antenna directions.

I made 2646 QSOs with zones 3-5 and 1313 QSOs to zones 14-16. Oddly, I only worked 169 QSOs in zone 25. The bands just never opened well to Asia which is completely different than what I had expected. Perhaps most surprising was the whopping total of 406 QSOs to zones 10-13 as there was always loud South American one-pointers to work on all bands.

Overall, I'm happy with the final result of almost 5,000 QSOs which is more than I expected. By Monday, I had already reconfigured the station back to how it was when I arrived and on Tuesday night I was heading to the airport for my flight back home.

Photo 20 – Here's Marko sitting in front of OA4O. Was he happy or relieved to be operating from his 40th zone? You be the judge!

I want to thank Olli, Pablo, Oscar, Aurelio, David and everyone at RCP club for all the help and opportunity to use their well-equipped club station. Peruvian food was also great, and it was nice visit and operation from my last zone. I also want to thank everyone who over the years has helped and supported me to achieve the peculiar goal of operating the CQ WW from all 40 zones. It has indeed been amazing journey with many lifetime friends and memories along the way.

Photo 21 – The city location of OA4O and all their club's antennas!

Marko's travels to operate from all 40 CQ Zones took 45 years!

Call	Year	Mode	CQ Zone	Category
OA4O	2025	SSB	10	SO HIGH ALL
DU0A	2024	CW	27	MULTI-ONE
VK1A	2024	SSB	30	MULTI-ONE
CW5W	2023	CW	13	SO HIGH 10M
9M6W	2023	SSB	28	SO HIGH 10M
VK6N	2022	CW	29	SO HIGH ALL
E2A	2022	SSB	26	MULTI-TWO
J42L	2021	CW	20	SO HIGH ALL
TM2Y	2021	SSB	14	SO HIGH ALL
8Q7ZO	2020	CW	22	MULTI-MULTI
N5ZO/M M	2020	SSB	6	SO LOW ALL (C)
6V7A	2019	CW	35	MULTI-TWO
KL7RA	2019	SSB	1	MULTI-MULTI
RM3F	2018	CW	16	SO LOW ALL
ZM4T	2018	SSB	32	SO HIGH ALL
CE3CT	2017	CW	12	MULTI-TWO
JA3YBK	2016	CW	25	MULTI-MULTI
C92ZO	2015	CW	37	SO HIGH ALL (C)
TF4X	2015	SSB	40	SO HIGH ALL (C)
RU9CZD	2014	SSB	17	SO HIGH ALL
VC2R	2013	CW	2	SO HIGH ALL (C)
N5ZO/6	2012	CW	3	SO HIGH 15M
KH7M	2011	CW	31	SO HIGH ALL
ZD8O	2010	CW	36	SO HIGH ALL
RC9O	2010	SSB	18	SO HIGH ALL
5R8ZO	2009	CW	39	SO HIGH ALL
JT1ZO	2009	SSB	23	SO HIGH ALL
RW0CWA	2008	CW	19	SO HIGH ALL
SU1KM	2008	SSB	34	SO LOW ALL
3DA0ZO	2007	CW	38	SO HIGH ALL
9K2HN	2007	SSB	21	MULTI-ONE
6Y2Z	2005	SSB	8	MULTI-MULTI
IG9A	2001	SSB	33	MULTI-MULTI
TI1C	1998	CW	7	MULTI-MULTI
K3LR	1997	CW	5	MULTI-MULTI
XX9X	1994	CW	24	SO HIGH ALL
AA6TT/0	1992	SSB	4	MULTI-MULTI
ZY5EG	1991	SSB	11	SO HIGH 20M
PJ9W	1990	SSB	9	MULTI-MULTI
OH6DO	1980	SSB	15	SO QRP 15M

Table 3 – Summary of N5ZO's journey through 40 zones in the CQ WW contest.

A Nearly Perfect Contest Location – D4C/D4Z

In August 2025, the D4C Monteverde station on São Vicente was hit hard by severe weather. Several towers and antennas came down, and for a while it looked certain that there would be no D4 activity in CQWW SSB this year. The city of Mindelo was still recovering, and the station on top of the mountain clearly needed both time and resources to be brought back to proper shape. The original plan was simply to skip the contest and focus on repairs later.

A few weeks before the contest weekend, however, the tone changed. After a series of calls within the team, the idea emerged: instead of giving up completely, why not try to rebuild just enough to put two serious single-band efforts on the air? That is how the SOSB 10 meter entry by DK4EE as D4C and the SOSB 15 meter entry by SQ9D as D4Z was born. Safety was the top priority throughout the preparation; we worked only within what was realistically possible at a damaged site and with limited manpower.

On 15 meters, we rebuilt a “minimally viable” system using what was left of the 40 m tower and a combination of 4-element Yagis at modest heights, plus some existing antennas that could be salvaged and reused. The goal was to create at least a basic set of directions to Europe, North America, South America and Africa, while also repairing the RF switching and control infrastructure that had been hit by lightning. On 10 meters, the focus was on restoring as much of the classic D4C stack as possible. In the end, we managed to rebuild almost the full system: 2×5-element Yagis toward Europe, 2×5-element toward North America, and single 5-element antennas for South America and Africa, all operated from an FTDX101D in SO2V configuration.

Conditions rewarded the effort, especially on 10 meters. Long periods of very high rates, including extended runs above 300 QSO/h and a memorable opening toward the Pacific, made it possible to claim a new world record in the SOSB10HP category. On 15 meters, the first night and early morning brought strong, steady pileups, but rates later in the day were shorter and more fragile than hoped, so the final result

fell short of a previous personal best. Still, given the state of the station just weeks earlier, both results felt like a major success.

Most importantly, the contest forced us to bring a damaged station back to life and, in the end, rewarded us with a claimed SOSB10HP world record. We are grateful to everyone who called D4C and D4Z during the weekend.

Photo 22 – Hard working Louis, DK4EE, and Piotr, SQ9D, smiling as they brought D4 back to the CQ WW airwaves.

Photo 23 – Most hams only dream of having an antenna farm like this “makeshift” set-up at D4C for the 2025 CQ WW SSB Contest.

Other Photos

Photo 24 – All the comforts of home while operating from Madeira at CR3DX

Photo 25 – Here is 17-year-old Adrian, SQ2RAD working towards his #2 World High SOAB Youth score!

Photo 26 – Great nighttime shot of the CR3DX antenna farm.

Band Breakdowns

WORLD SINGLE OPERATOR ALL BAND

High Power

EF8R	87/12/45	525/21/83	1182/31/109	2611/36/121	1740/38/128	4955/38/137
8P5A	18/7/16	384/16/62	1198/25/95	2350/37/115	2958/36/120	3723/32/117
HD8R	10/3/3	260/19/53	1331/29/92	2132/34/116	2325/35/117	3378/31/116
PJ4K	18/6/8	204/15/45	1192/28/93	2423/32/95	1656/32/90	3661/35/108
XL3T	45/7/8	383/14/50	968/25/86	1394/35/119	1619/31/107	1856/30/109
HP3/VE3DZ	4/2/3	303/15/53	1048/27/93	1364/33/104	1482/30/103	2277/30/95
K1LZ	30/11/20	197/16/55	1114/33/97	1175/35/105	1462/35/105	1451/22/86
PP4T	0/0/0	0/0/0	368/22/67	1306/32/98	1520/34/110	2856/35/112
RK4FD	56/8/35	233/13/57	1255/29/92	1453/33/94	1855/35/99	2077/35/104
P49Y	11/5/9	147/12/29	498/23/67	1165/28/82	1473/28/79	1788/25/80

Low Power

N1UR	14/6/7	134/15/55	265/21/75	555/30/102	803/28/109	1246/29/109
PC0A	174/5/39	507/10/55	281/16/65	347/27/91	523/28/97	901/30/106
HI3T	2/2/2	166/9/42	523/21/74	337/21/66	622/23/76	1168/24/77
PR2K	1/1/1	1/1/1	30/11/19	230/26/67	264/28/79	1561/31/96
N8II	0/0/0	3/2/3	56/9/31	224/26/82	301/26/87	960/32/118
NN7CW	3/2/2	45/10/29	126/19/57	238/20/78	313/26/80	680/25/86
AC0W	6/2/2	20/7/15	131/21/62	264/28/93	383/25/97	423/29/94
EI4KU	116/7/37	112/10/36	135/12/50	489/18/60	592/20/68	457/24/74
UP7L	0/0/0	12/3/5	70/11/35	246/27/73	473/28/88	625/25/88
WW4XX	0/0/0	19/10/18	79/18/48	183/21/72	237/28/84	638/31/97

QRP

K1ZM	10/4/6	44/13/31	122/16/59	140/27/78	303/23/85	793/29/101
ND0C	0/0/0	5/3/2	38/16/28	156/23/69	226/24/74	411/31/95
ES6RW	18/3/12	79/3/26	137/17/55	155/20/62	308/23/67	375/24/68
JH1OGC	2/2/2	9/7/7	60/20/29	41/16/31	151/27/55	204/27/54
MW6HNN	0/0/0	0/0/0	5/3/5	337/14/61	148/15/60	381/23/68
W6QU	0/0/0	4/3/3	14/8/7	41/18/32	156/26/67	189/26/70
GI7JYK	0/0/0	53/3/15	87/9/34	122/11/41	100/8/34	273/16/55
HA5BA	0/0/0	36/4/18	122/9/42	183/10/45	156/14/42	116/15/30
JH7UJU	0/0/0	4/3/3	34/10/12	36/17/20	111/23/40	141/24/42
NP2Q	0/0/0	7/4/7	11/5/7	23/9/16	17/8/13	427/18/55

WORLD SINGLE OPERATOR ASSISTED ALL BAND

High Power

ER4A	136/9/46	584/16/75	1643/29/111	1172/32/123	2077/36/132	2093/38/150
PT5J	14/7/11	71/17/37	271/33/85	1492/38/130	1335/38/129	2545/38/142
OM2VL	224/10/47	561/18/86	695/31/113	1073/38/136	1286/38/132	1592/40/151
TO2M	36/5/13	197/15/49	701/29/101	1105/35/115	1505/34/119	2482/37/129
KP2B	9/3/9	95/9/44	472/22/83	1622/35/121	1218/33/116	2711/36/133
EB5A	83/7/43	260/15/76	573/28/101	1493/38/131	1026/37/134	1785/40/156
HA3NU	130/8/48	530/15/75	1079/30/110	1364/37/136	1367/38/135	1014/38/143
VY2TT	12/7/9	210/13/57	475/24/94	1034/36/124	1688/34/124	1329/33/131
S57AL	51/5/38	468/15/71	909/30/106	1201/37/130	997/37/134	1185/37/147
SO9I	138/7/50	562/14/68	802/26/95	986/37/120	1240/38/131	1176/37/146

Low Power

P40W	13/4/12	38/10/34	490/21/76	1255/31/111	1354/32/111	1620/35/122
CO2XN	2/1/2	102/6/17	200/20/65	843/30/110	759/30/118	1762/34/131
UN4Q	31/6/16	257/9/52	316/21/66	325/26/89	448/26/81	1571/31/101
4U1A	14/4/12	339/9/48	628/17/70	1058/31/104	772/30/96	897/37/138
9K2ES	0/0/0	0/0/0	285/17/62	1017/30/96	614/21/77	1180/25/80
TM3Z	138/8/43	493/13/67	529/23/90	518/36/124	491/34/108	690/36/117
OL9R	106/5/37	476/12/61	440/24/91	335/33/119	428/32/120	566/37/121
DJ4MX	86/5/40	310/10/60	374/22/86	359/31/109	372/32/113	620/38/137
3V8LL	121/7/41	43/6/28	84/10/36	344/23/73	394/18/71	1102/27/88
SP9XCN	25/3/18	547/10/61	355/14/64	469/30/111	539/29/115	450/34/106

QRP

IZ3NVR	12/3/12	140/8/48	142/17/68	203/24/78	248/25/84	353/28/97
YU3LAX	45/4/23	194/7/46	119/7/39	151/16/59	163/19/52	182/22/54
JA6GCE	1/1/1	2/2/2	48/15/21	66/14/32	195/26/54	297/30/77
MW7FON	0/0/0	35/4/20	87/9/34	45/9/31	142/23/65	372/21/61
IZ0FUW	3/2/3	24/3/15	44/8/27	104/15/48	115/20/44	229/22/65
KA8SMA	0/0/0	3/2/2	3/3/3	119/20/62	91/14/39	193/21/64
LY5I	14/3/9	123/4/38	109/10/46	112/7/34	112/11/44	157/15/48
YO8FC	22/4/16	65/6/30	110/12/42	59/10/34	109/14/43	146/22/59
RQ7L	0/0/0	0/0/0	0/0/0	71/11/38	105/13/41	468/25/76
YU1A	0/0/0	115/4/31	78/4/37	139/11/50	100/9/35	159/15/35

WORLD MULTI-OPERATOR SINGLE-TRANSMITTER

High Power

CQ9A	116/14/66	486/21/95	1416/34/125	2874/39/152	2828/39/151	4727/40/164
V47T	31/8/26	331/18/75	932/32/115	2863/38/143	2851/37/140	3893/39/141
SJ2W	95/9/59	186/19/82	446/34/122	2545/39/152	2997/39/149	2209/39/160
IP4M	62/11/61	200/18/85	1127/31/117	2066/38/147	1877/38/145	2521/38/154
PJ4G	50/7/19	194/15/48	721/28/100	1544/36/124	2400/34/122	3143/35/130
EI7M	95/12/57	438/17/80	1241/31/117	1445/37/140	1726/37/139	3130/40/159
OM7M	195/14/67	367/14/76	1488/34/128	1522/37/141	2033/38/149	2412/39/156
DR1A	52/10/52	484/16/84	1500/35/124	1381/39/148	1839/39/140	1919/40/164
TM0R	85/9/40	285/14/80	1173/30/112	1208/38/138	1930/38/147	2371/39/160
9A7A	101/9/50	356/16/78	1327/34/117	1091/37/133	1878/36/133	2428/38/148

Low Power

7Z7A	6/5/6	37/10/37	700/29/96	1961/36/126	818/29/104	1990/33/128
IO6T	78/6/50	266/13/67	300/29/106	1140/36/137	795/36/127	1136/38/144
CR2M	18/4/18	159/13/57	272/24/80	1029/35/126	1111/32/125	1420/35/135
ED7O	28/6/20	207/12/64	323/25/93	1129/35/131	1229/33/130	1359/35/131
IO3F	97/6/44	325/12/62	576/28/98	868/36/134	749/36/135	881/37/151
E7CW	81/7/44	345/11/64	330/21/84	964/32/126	826/34/124	1033/37/126
VP2VRX	0/0/0	48/8/20	338/15/45	1180/23/80	905/25/76	1757/22/79
ED1B	45/6/33	198/10/58	272/21/83	597/32/121	667/32/120	912/36/128
N4SS	5/4/5	36/12/32	245/23/73	372/31/114	319/31/104	904/33/129
LX5M	81/6/43	592/11/62	265/16/72	579/33/113	385/33/116	705/35/131

WORLD MULTI-OPERATOR TWO-TRANSMITTER

High Power

CR3A	160/13/57	512/21/86	1920/33/121	3809/38/148	4052/36/144	5526/39/154
P33W	160/9/56	496/14/73	2198/34/120	3557/39/152	4089/39/153	4451/37/159
RU1A	154/9/60	858/24/91	2149/37/127	3336/40/153	3574/39/140	3535/40/164
TO4K	97/8/26	500/16/66	1789/28/108	3008/38/131	4054/36/129	3834/36/130
IP4X	148/12/60	475/16/79	1552/33/125	2146/39/145	3661/40/155	3038/39/165
CR6K	109/12/57	716/19/85	1513/30/115	2773/38/141	3560/38/149	3703/38/148
LZ5R	192/8/50	927/17/83	1648/31/107	2431/39/151	3393/39/154	3409/38/155
J62K	34/5/12	188/14/39	1481/26/94	2468/37/121	3268/34/114	4145/38/135
II2S	123/8/53	775/16/84	1804/32/117	2225/38/143	2388/37/141	2399/38/159
W3LPL	12/6/10	163/18/75	1174/30/112	1470/39/144	2390/39/149	2450/36/156

WORLD MULTI-OPERATOR MULTI-TRANSMITTER

High Power

CN3A	413/12/65	1540/24/96	3309/37/133	4094/39/152	5036/39/150	5349/40/165
ES9C	845/15/70	1718/24/97	3309/36/133	5508/40/164	4280/39/155	3523/39/165
K3LR	362/18/53	750/23/93	2323/38/130	2961/39/155	3593/39/156	3747/39/159
V26B	94/9/29	729/18/79	2685/34/126	3033/39/145	4326/38/137	5007/39/143
PJ2T	150/13/30	570/18/71	2040/30/115	3120/38/136	3627/38/141	4017/36/135
M6T	704/14/70	2042/24/100	3555/37/134	3100/39/148	3542/39/158	2117/39/163
UA7K	495/13/66	1322/23/91	2971/36/137	4016/39/161	3063/37/150	3005/39/157
DF0HQ	790/12/69	1844/21/93	3257/36/135	3170/39/156	2493/39/157	1768/39/158
LZ9W	541/9/61	1496/19/88	2668/34/129	4236/39/156	2670/36/139	2334/38/160
II9P	351/8/55	1214/17/79	1758/28/107	3664/40/156	2679/39/144	3387/38/153

Top Scores – WORLD

SINGLE OPERATOR HIGH POWER

All Bands

EF8R (E77DX)	25,747,775
8P5A (W2SC)	17,700,546
HD8R (LU9ESD)	17,032,032
PJ4K (N6KT)	15,469,211
XL3T (VE3AT)	10,232,838
HP3/VE3DZ	9,577,932
K1LZ	9,336,580
PP4T (PY4BZ)	8,839,320
RK4FD	8,222,346
P49Y (AE6Y)	6,890,585

28 MHz

D4C (DK4EE)	4,311,150
TI7W (N3KS)	1,680,869
TI1K (TI5CDA)	1,390,194
K2SSS	1,261,656
DM0A (DK3DM)	1,220,688
CR5Y (OL5Y)	1,189,085
JS6TSE (JM1UWB)	1,110,161
YT8WW	1,082,154
RM9I	1,035,990
K1TO	1,035,555

21 MHz

D4Z (SQ9D)	2,468,860
CR6T (CT1ESV)	1,390,928
E70T	1,335,972
OG8M (OH8MCT)	1,325,520
WA3A	1,191,797
JA5OVU	1,117,760
JJ0VNR	1,098,656
UP0L (UN9LW)	1,097,760
KU2M	1,024,485
SN5X	1,023,840

14 MHz

ED8W (EA1BP)	2,095,625
YL2SM	1,304,820
E77EA	1,266,672
TI1T	1,143,990
4L6AM	1,136,975
YT7BA	641,628
EA3CI	623,310
JA7FTR	306,162
YU7DX	283,500
IQ2ZY (IU2IHM)	279,936

7 MHz

ED5R (FA5Z)	634,788
9A4V (9A2VR)	597,536
R7NW	480,974
W7WA	441,592
IB8A (I8QLS)	439,650
IP9C	401,200
S51CK	279,554
OK5D (OK1DTP)	255,651
BA8CY	168,480
K4JPD	98,625

3.7 MHz

S52WW	101,989
IQ3MV (IU3QMK)	42,076
W3BGN	25,200
W1HI	15,624
LA6OP	14,094
NT2DR	12,312
K1AX	3,072
DG7SFI	1,161
JE2OTM	600
4I1EAY	90

1.8 MHz

LX1NO	87,084
OZ4MD	34,752
OK4U	28,168
UT6UD	18,676
EI5GUB	13,671
SP6JZL	11,750
VE3PN	8,910
VE3KEM	4,230
RZ9YN	3,894
TA2DM	3,751

SINGLE OPERATOR LOW POWER All Band

N1UR	4,985,102
PC0A	2,834,758
HI3T	2,821,272
PR2K (PY2UD)	2,118,709
N8II	1,812,096
NN7CW	1,661,352
AC0W	1,591,725
EI4KU	1,581,632
UP7L (UN6LN)	1,423,611
WW4XX (LZ4AX)	1,390,739

28 MHz

PY2WB	704,165
HZ1TT	559,845
IB9X (IT9XTP)	546,925
YI1YY	486,080
LZ4TX	476,150
HA6NF	465,864
SP8IMG	337,760
JA6WFM	299,204
4F1EBD	258,489
K4TMC	253,644

21 MHz

HI3SD	359,315
TA4A	298,716
KP4NZ (KP4PUA)	230,251
LZ2VU	198,084
SP1NQH	154,330
YL5W (YL2GN)	135,296
IS0GRB	127,514
JA9ECO (JH1RNZ)	122,640
VU22DX	105,560
WA7BNM	102,114

14 MHz

D4M	392,862
IU0UDM	191,906
RZ3Z	137,445
UT7EZ	89,060
F8DRA	75,296
MM0DXL	64,943
4Z5PN	63,120
JL1AGY	59,874
W2TZ	59,170
SP2AYC	55,237

7 MHz

EF3W (EA3CX)	165,760
OE3WMA	132,822
HK1J	114,586
YU7EE	73,815
YT5T	45,838
YP3A (Y03ZHR)	42,631
SP5FKW	20,145
G3GLT	15,576
HA0VI	15,436
UT8UL	13,640

3.7 MHz

EU2EU	52,136
F5BEG	36,498
SP4DEU	23,700
IN3KTT	22,444
4L2M	21,041
EI6JK	20,590
9A8TT (S53T)	11,613
Y07NSP	10,622
Y02LTA	9,666
DO1FOX	9,350

1.8 MHz

SN0R (SQ9IAU)	29,450
E79D	11,596
YT5T	8,750
EA5RC	3,393
PA3DUU	3,157
LC9X (LA9XGA)	2,900
HA5BZR	2,784
RK3E	2,310
DM2BPG	1,980
PE1GJT	1,792

SINGLE OPERATOR QRP All Band

K1ZM	1,796,432
ND0C	850,085
ES4RW	715,540
JH1OGC	341,541
MW6HNN	331,419
W6QU (W8QZA)	289,900
GI7YK	203,626
HA5BA	186,177
JH7UJU	165,094
NP2Q	157,762

28 MHz

S51NA	101,292
PY2BN	91,418
SY1AEE	71,104
DK5DQ	70,048
SP4LO	66,144
JK6DXD	64,390
JA2MWV	44,121
VE9QR	33,600
W7USA	26,904
YD1SKA	26,838

21 MHz

K5RX	98,555
JR4DAH	98,013
I21ANK	45,900
I28WGU	40,992
TA2IB	24,426
JR2EKD	23,460
EA7JTP	22,356
CT4QB	20,325
UT0UI	17,958
JE7KHL	16,120

14 MHz

YU1NR	67,580
G4CWH	39,185
OK5IM	30,704
E78DT	26,896
HF5WIM	25,368
A71AE	12,096
M1P	10,860
RW3AI	6,885
G5MDR	6,532
IW1BCO	5,842

7 MHz

OK6OK	25,461
YB9YBB	12,606
SV1DZB	5,904
DU1E	1,476
EA2CC	1,296
JR1ABS	1,064
SV1EEM	806
UT4UYT	336
SQ9DEO	285
IW2EPE	88

3.7 MHz

DR8M (DK5DQ)	5,670
M0YJB	920
M3A (G4TDX)	143
JH1APZ	80
YU0FF	594
YT2K	99

1.8 MHz

9A5DX	296,496
SQ2PHG	185,745
9A6A	179,445
HA1TJ	167,895
YL3FT	161,840
S58Y	130,944
SN3U (SP3GTS)	116,466
GW9JJ (GW0GEI)	110,124
OR7K	108,384
SN9B (SQ9OB)	99,789

SINGLE OPERATOR**ASSISTED
LOW POWER****All Band**

P40W (W2GD)	8,187,731
CO2XN	4,873,524
UN4Q (UA4Z)	4,122,308
4U1A (OE1ZZZ)	3,567,656
9K2ES	3,550,008
TM3Z (F4DSK)	3,506,883
OL9R (OK6RA)	3,152,060
DJ4MX	2,808,496
3V8LL	2,571,424
SP9XCN	2,483,530

28 MHz

ZW5B (PY1NX)	1,780,155
IH9/OK1M	976,584
4X7M (4Z4AK)	897,572
PU2VLW	782,621
V51F (DJ2HD)	568,134
PY2HT	562,449
SN7T (SQ7OTK)	457,975
UW5U (UY2UA)	456,840
OT1A (ON4CCP)	438,770
DL1YAW	415,140

21 MHz

FY5FY	1,400,175
PZ5TW (PY8WW)	1,090,296
IT9STX	462,808
WW3S	421,655
EA8KY	408,562
EA3XR	256,851
JF3BFS	237,870
N4IJ	218,860
N9TGR	203,634
SOON (SQ9CNN)	198,170

14 MHz

9A9R	626,574
HG0R (HA0NAR)	626,416
YT8A	507,036
S52OT	397,727
YU5M	360,220
ES7GN	319,950
4M4K	236,064
SV2AEL	203,970
HZ1LR	202,948
SP3WKK	160,264

7 MHz

EW7B	143,385
YT0A (YU1EL)	120,404
OK4R (OK6RP)	101,296
E71T	95,600
Y06XK	72,000
OH2PM	66,125
YT1DDL	28,677
SQ1BHH	25,116
9M2M (9M2GET)	18,122
9A7C	16,093

3.7 MHz

SP2N (SQ2HCW)	67,596
ME5W (G6EMA)	63,420
OK2BFN	60,240
OU8A (5P0O)	44,730
SP4AWE	32,775
DJ7GS	29,824
LA2AB (SP2ASJ)	28,416
YT3E	26,660
OM5KM	26,520
SQ9MR	20,280

1.8 MHz

HB9PUE (HB9DHG)	10,604
EW1M	5,880
DJ5AM	2,257
LZ2FU	1,428
SP2BP	1,050
SP2WGB	289

SINGLE OPERATOR**ASSISTED
QRP****All Band**

IZ3NVR	991,872
YU3LAX	447,528
JA6GCE	419,375
MW7FON	393,617
IZ0FUW	283,696
KA8SMA	248,630
LY5I	246,942
Y08FC	238,564
RQ7L	203,592
YU1A (YU1LM)	191,499

28 MHz

PJ2/DH8BQA	726,250
PU2UAF	238,855
UX9Q	192,448
MI1M (MI0LLG)	173,128
CT2GSN	146,972
UY5LW	57,684
CE2LS (XQ2OP)	37,576
HJ4V	36,720
XQ3WD	30,885
SV1NK	28,329

21 MHz

HG1S (HA1DAE)	165,564
GI4T (GI4DXR)	86,716
BH4TQX	75,346
K3TW	56,238
TI1F (TI2RF)	51,410
JQ1NGT	43,575
W3EK	41,670
US1VM	37,350
SP4NKJ	32,076
EA5AX	24,640

14 MHz

UR2Y (USOYW)	143,184
OM0AA (OM0AAO)	66,378
K8MV	49,068
DL1PP	9,016
MM0DHQ	8,466
IZ4REF	8,308
RT4W	7,581
SM6XHM	3,645
BH3XZT	989

7 MHz

DQ2A (DL2SAX)	25,370
LY2OU	18,760
OM0AAO	10,854
M1X (G0CKP)	7,865
TI5FSP	2,662
JM4WUZ	561
JH3DMQ	98
DL5CTE	56

3.7 MHz

OM0RX	66,066
DL2SAX	9,964

1.8 MHz

UR5FEO	1,450
UT7A (UT7AA)	64

**MULTI-OP
SINGLE-
TRANSMITTER****HIGH POWER**

CQ9A	33,752,580
V47T	21,988,148
SJ2W	16,748,844
IP4M	16,343,447
PJ4G	16,084,014
EI7M	15,801,036
OM7M	15,433,719
DR1A	14,602,599
TM0R	13,734,630
9A7A	13,563,269

LOW POWER

7Z7A	9,585,000
IO6T	6,264,660
CR2M	5,891,976
ED70	5,774,340
IO3F	5,269,935
E7CW	4,534,060
VP2VRX	3,631,713
ED1B	3,434,680
N4SS	2,956,182
LX5M	2,907,443

MULTI-OP**TWO-TRANSMITTER**

CR3A	40,999,630
P33W	37,658,520
RU1A	25,217,808
TO4K	23,563,920
IP4X	22,987,836
CR6K	21,592,530
LZ5R	19,242,424
J62K	17,611,425
II2S	17,477,612
W3LPL	17,472,510

MULTI-OP**MULTI-DISTRIBUTED**

CN3A	53,591,888
ES9C	34,091,438
K3LR	33,197,964
V26B	31,877,516
PJ2T	30,295,422
M6T	27,319,150
UA7K	24,234,613
DF0HQ	22,081,284
LZ9W	20,860,392
II9P	19,872,864

ROOKIE**HIGH POWER**

DL6RY	3,977,124
LT3E (LU2DUV)	1,638,888
DA1EE	1,387,659
DL2YA	1,222,950
KA6JAR	919,800
DK7DX	782,648
WB5SKM	735,540
IU4KVZ	618,324
NV1U	485,030
LB7EJ	385,533

LOW POWER

9K2ES	3,550,008
HA0SA	788,156
9A5KW	752,202
KE2DPK	422,661
PD8MD	405,836
F4MAG	330,529
KE2CWJ	266,814
SP3BLZ	236,321
DO6FM	204,330
IU1TKT	197,160

CLASSIC**HIGH POWER**

P49Y (AE6Y)	6,750,485
ZF1A (NN1C)	5,710,536
WP3C	5,538,304
CT3KN	5,403,349
HP3/VE3DZ	5,154,670
P3C (5B4AO)	3,677,469
DJ5MW	3,595,845
RG9A	3,429,888
ED7W (EB7A)	3,136,320
DL2CC	3,112,560

LOW POWER

N8II	1,812,096

<tbl_r cells="2" ix="5" maxcspan="1" maxrspan="1