Results of the 2023 CQ WW DX SSB Contest

My first CQ WW. It was an amazing experience! - 2E0SVB

By John Dorr, KIAR

cqk1ar@gmail.com

hat a great weekend – the 75th running of the CQ WW SSB Contest. You read that right; every last weekend of October for three quarters of a century, the bands have come alive as if by magic. It never ceases to amaze me that you can listen to the bands an hour or two before the contest starts in relative calm. Then, as if someone flipped on a light switch, they become filled from end-to-end with signals from around the world!

There's a good reason why the bands are so full. For starters, we received an impressive 9638 logs in the 2023 WW edition, a year-over-year increase of over 7% with 1500 entries showing up just one hour after the contest ended! Being a little "long in the tooth," I can remember when it literally took weeks for my share of the paper logs to arrive at Chez AR for log checking back in the early 80s. When compiling the data, I'm happy to report that your activity reflected 4,656,180 QSOs made during the contest (a 13.2% increase from 2022), producing an amazing average of 27 QSOs in every second of the contest. Indeed, even with some disturbed conditions over the weekend, we experienced the joy of an emerging solar peak!

One of the fantastic aspects of the CQ WW is the range of activity that participates from around the world. Whether it was Greenland (OX) or Angola (D2), Chatham Islands (ZL7) or Pakistan (AP), the world was well represented. Do you remember the days when BY1PK was one of the first and only stations that was allowed to operate from China? Times have changed as we received 245 logs from China in 2023.

Here is part of Team PJ4K hard at work working 16,000 QSOs (I-r, N6KT, N3RD, W4PA, KM3T)!

Here's a youthful statement! Team YROK showing the power of young operators in the CQ WW!

There's one last piece of introductory business I'd like to offer with my thanks – your soapbox comments and input. With literally hundreds of comments, I can't address them all here, but can provide a representative sample that reflects your interest, excitement, and experiences in what is undoubtedly the most popular contest in the world – the CQ WW! Here's just a few for you to enjoy. Note that all comments are available at: https:// cqww.com/soapbox.htm?yr=2023.

- "Our very young team of schoolchildren showed a good debut!! Six youngsters and their teacher supported the competition from Ukraine. 73!" – Crew of RIVNE DX CLUB EM7KAA
- "I had no intention of doing much of anything in this contest, except hoping I could get Zone 29 on 20M. Unexpectedly, that was my very first contact, and after that it was like eating M&Ms... I just couldn't stop... a totally fun weekend!" – K1YWW
- "I for one love this event, and I very much look forward to next year." – 2E1BRT

So, with the introductions complete, let's move on to the star of this show – your results in the 2023 CQ WW SSB Contest.

Some Amazing Results!

The good news as solar conditions improve is that we have the potential for amazing conditions, particularly on 15 and 10 meters. The bad news is that an active sun often offers a much greater potential for solar disturbances and storms. Such was the case in the beginning of the 2023 CQ WW SSB contest as the K-index hovered around 4, suggesting that it could be a long, long weekend. As we've learned over the years, however, our solar friend can often surprise us as conditions turned out to be nothing short of spectacular. Ten meters delivered incredible results with your comments and scores reflecting the excitement we all enjoyed.

The annual slugfest of World Single Operators did not disappoint as Tom, W2SC, took the crown from his newly minted 8P5A station, posting a winning score of 16.1 million. You would think that 3666 QSOs on 10 meters would keep him busy, but Tom also managed to pull in 2500 contacts on 20 and 15 meters as well. An equally respectable showing came in from Jamaica as Manu, LU9ESD, achieved a fantastic result of 15.1 million from 6Y1V!

All you need is a van, some basic yagi antennas and a mast like KW7MM, right? Lionel's 2023 CQ WW SSB mono-10 meter effort was simply amazing.

The low-power contingent had a standout performance by Dimitri, RA3CO, who navigated his way to Suriname and put the relatively rare PZ5CO station on the air, breaking the 10 million point barrier with just 100 watts! Also, in an even rarer QTH far from the population centers, Holger, ZL3IO, just couldn't compete from Chatham Islands, but still posted a fine second place score of 4.5 million.

The U.S. Single Op battle was also very competitive this year as two stations made it into the World Top-10 listings, with Kevin, N5DX, winning from N2QV's station with a fantastic score of 10 million. Krassy, K1LZ, operating from the eastern edge of Maine gave Kevin a run for his money with an excellent result of 8.5 million. Of note is that there were six scores from Zones 3 and 4 in this year's Top 10, demonstrating that you don't have to be on the East Coast to place well when conditions are good.

The QRP group had a big surprise this year as K1ZM produced a 1.2 million point score, more than doubling his nearest competitor, having recently returned to Cape Cod from his former dominant VY2ZM Canadian QTH.

Single band operating continues to be a huge favorite amongst CQ WW operators. In many ways

Enthusiasm abounds with the ops as the impressive 9M8J Multi-Op Explorer set-up takes shape.

it's much easier to focus on one band or leverage the strength that your station may have with a single band antenna installation. The incredible effort from HK1T demonstrates this as Salim worked over 3500 QSOs on 15 meters alone, producing a 1.5 million point single band score! If you take a look at the top 10 meter scores, it's nothing short of a global demonstration with entries from 4L, CE, VK, UP, LU, 9N, and I!

A quick peek at the multi-op scores may give you pause and consider the possibility of typographic errors. The scores are incredible. I'm not sure which one is more impressive as I report a winning Multi-Single Score of 27.7 million from P33W. Then there was the amazing results from V47T, where 12,000 QSOs were made from their Multi-Single set-up. Or, perhaps the 37.3 million point Multi-Two effort from the team at PJ4K. And, finally the mind-boggling result from CN3A in the granddaddy Multi-Multi group where the team, led by IK2QEI and others, worked 22,000 QSOs, resulting in an amazing tally of 56.5 million! Having come in second place last year, Team CN3A was bound and determined to win and win they did! Finally, check out the score achieved from the K3LR superstation, where the team posted a #2 world ranking, tallying nearly 25 million points and 11,000 QSOs from Western Pennsylvania!

Lastly, let's be sure to recognize the Youth group. I recall the day when making 1 million points was an incredible achievement in the CQ WW for any age group. This year, the winner of the Youth Overlay category, SQ9ORQ, operating from the fine SO9I station blew that away with a final score of 6.1 million! In fact, six Youth entries cracked the 2.5 million point barrier, amazing achievements by the youngest amongst us!

A Category for Everyone!

There is one aspect of the CQ WW that can't be debated – the large number of operating categories available to its participants (See Table 1). Having so many categories is both a blessing and a curse in that there is more opportunity to create winners, while at the same time presenting huge administrative challenges needed in keeping track of it all. As you might expect, the category requests keep coming ranging from "Over xx-years-old" to "High score with wire antennas." Add the possibilities of power options, assisted/ unassisted, and multi-ops, you can imagine how unwieldly this subject quickly becomes. While there's always room for new ideas in the WW, it's time to take a pause in creating new categories for now.

In the widely watched race between assisted and unassisted entries, the unassisted group easily won out by a large margin (3446 vs. 2610 logs). Low power, unassisted entries continue to dominate the log entries, demonstrating the influence the "smaller stations" carry in this contest.

One of the YR0K ops at work. How does this compare to your first rig?

Table 1 – 2023 CQ WW SSB Logs by Entry Class										
Category	AF	AS	EU	NA	OC	SA	ALL	% of all		
ALL High Assisted	2	86	511	653	27	25	1,304	19.7%		
ALL High Unassisted		118	316	323	53	24	844	12.8%		
ALL Low Assisted	4	95	658	402	51	64	1,274	19.3%		
ALL Low Unassisted	12	284	1,240	706	157	67	2,466	37.3%		
ALL QRP Assisted		5	22	2	2	1	32	0.5%		
ALL QRP Unassisted		15	82	23	12	4	136	2.1%		
Multi Explorer		1	7		3	1	12	0.2%		
Single Op Explorer			5	1		1	7	0.1%		
Multi-2	1	13	41	29	6	6	96	1.5%		
Multi-Multi	1	5	21	17	1	2	47	0.7%		
Multi-Single High	5	21	130	45	12	13	226	3.4%		
Multi-Single Low	1	39	81	18	11	10	160	2.4%		
ALL	36	682	3,114	2,219	335	218	6,604			
% by Continent	0.5%	10.3%	47.2%	33.6%	5.1%	3.3%	100.0%			
* Single Band Entries F	vcluded									

* Single Band Entries Excluded

Accuracy Matters in Contesting

It's one thing to work lots of stations in the CQ WW. It's quite another accomplishment to do so with accuracy. Unlike many other contests, the copying challenges of the CQ WW are less strenuous as the primary need is to get the callsign correct as most zones are already known. However, you'd be surprised how many bad QSOs are logged because an operator made an incorrect assumption about a received zone vs. what was sent!

This year's batch of high performing single operators (See Table 2) was an impressive and growing group that had a 1% or less error rate (errors defined as bad calls, not-in-log QSOs, and busted exchanges). That result is particularly notable for logs containing multi-thousand QSOs. Also, there is an additional elite group that needs to be recognized for their year-on-year consistency (2022 + 2023): DP5P (DL1MHJ), K1BX, K6NA, K6XX, WP3C, and WW4XX (LZ4AX). Great job by all!

Table 2 – Accuracy Winners for the 2023 CQ WW

99+% Accurate QSOs – SO All Band Unassisted, over 1000 Qs /

Entrant	Power	Raw QSOs	Final QSOs after checking	Entrant	Power	Raw QSOs	Final QSOs after checking
DH1UK	HIGH	1142	1131	N5DX	HIGH	5541	5490
DM5EE	LOW	1642	1634	OL5Y	LOW	1487	1474
DP5P	LOW	1182	1175	PA4VHF	HIGH	1724	1716
(DL1MHJ)*				PC2T	HIGH	1071	1062
EA3CI	HIGH	2435	2417	RM9I	LOW	2392	2369
EW1I	HIGH	1008	999	SM5X	HIGH	1136	1125
JH7QXJ	HIGH	1530	1516	(SM5GMZ)			
K1BX*	LOW	1319	1310	VE5MX	HIGH	3671	3642
КЗТС	HIGH	1024	1014	VE6BBP	HIGH	1160	1150
K6NA*	HIGH	1202	1196				
K6XX*	HIGH	1936	1918	WP3C*	LOW	5154	5124
LY9A	QRP	1297	1287	WW4XX	LOW	1405	1394
M5DX	HIGH	2083	2065	(LZ4AX)*			
(G4FAL)				YO4RDW	LOW	1976	1957
MM1E (MM0GOR)	HIGH	1730	1720				
N2IC	HIGH	2876	2849	YP0C (YO3CZW)	HIGH	4487	4444
* repeat fro	m WW SSB .	2022		ZS4TX	HIGH	1309	1296

The CQ WW Contest is a Global Phenomenon for Youth!

The popularity of our recently created Youth overlay continues to grow, which should be of great encouragement to those of us who are a little longer in the tooth. As you can see in Table 3, what was particularly impressive was the fact that we had youth entries from 36 countries, including ten logs from China alone! Hidden from this data is the fact that there were also a number of multi-op stations that included young operators (take note of the soapbox comment by the EM7KAA team of 10-year-old school kids!).

Country	AS	EU	NA	OC	SA	ALL
9A		3				3
BV	1					1
BY	10					10
CE					1	1
DL		13				13
EA		1				1
EI		1				1
ES		1				1
F		2				2
G		4				4
HA		1				1
HL	1					1
HS	1					1
I		3				3
JA	2					2
К			24			24
KH6				1		1
LY		1				1
OE		1				1
OK		1				1
OM		1				1
PY					3	3
S5		4				4
SP		12				12
SV		1				1
TA	1					1
UA		5				5
UA9	1					1
UR		1				1
VE			1			1
VK				1		1
XE			1			1
YB				3		3
YO		7				7
ΥT		3				3
ZL				1		1
ALL	17	66	26	6	4	119

Table 3 – 2023 CQ WW Single-Operator Youth Entries by Geography

Some Folks Can Really Talk!

We've all heard them operating. Maybe you're one of them. These are the folks that can rattle out phone QSOs like that classic Federal Express high-rate TV commercial (see https:// www.bing.com/videos/riverview/relatedvideo?q=fedex+fast+talking+commercial&mid=BF4F-<u>3C24E8D1DF1E54BDBF4F3C24E8D1DF1E54BD&FORM=VIRE</u>). For many of us, it's hard to imagine working 438 QSOs over the entire weekend, much less in one hour as what was done by Manu, LU9ESD from 6Y1V. Or, maybe you find ES2MC's 118 QSO rate, while running five watts, to be even more impressive. Of course, two other concepts need to be stressed here: 1) Getting the QSO info correctly while operating at lightning speeds, and 2) being compliant with the CQ WW rules, which stipulate that you sign your callsign at least every three QSOs. You can find more rate information at https://www.cqww.com/rates.

Table 4 – 2023 CQ WW SSB High Rates by Category

EX9A 227 UZ2M 205

*Note that rate is defined as total QSOs in 60 minutes minus errors

PX2A ------ 432

W3LPL 420

SOAB High	n Power	SOAB Low	Power	SOAB QRP		Multi-Single (H	ligh Power)
CALL	Rate*	CALL	Rate*	CALL	Rate*	CALL	Rate*
6Y1V	438	PZ5CO		ES2MC		CR3DX-	394
NP2X	395	3V8SS		LZ5Y		P33W	
8P5A	379	WP3C	258	ZY6G		E7DX ·····	384
KP2M	368	EY7BJ		PC2F	76	V47T	367
TI7W	339	ZL7IO		ES6RW	76 ·	D4C	345
Multi-Single	e (Low Power)	Mu	ti-2	Multi-N	Multi		
CALL	Rate*	CALL	Rate*	CALL	Rate*		
VP5M		ZF1A	684	CN3A	751		
ZW58	270	PJ4K		PJ2T	718		
ZF2B		CR6K	455	M6T	641		

599

594

KC1XX ······

KH6J------

Some Other Items of Interest

Occasionally, contest operations get some good press, often surprising to those involved. Such was the case for the 2023 PJ4K Multi-2 team, who posted an incredible score of over 37 million points, working nearly 16,000 QSOs. And, while it wasn't the New York Times providing the coverage, the local Bonaire Reporter, published a nice spread about the team, together with a photo op of K1XX and W4PA! You can find the article archived at: <u>https://southeastcontestclub.com/wp-content/uploads/2023/11/PJ4K-Article.png.</u>

And, while there are many examples out of 9500 log entries that are above the norm, one that stands out was the amazing accomplishment by KW7MM in the 2023 CQ WW. Using a completely portable van set-up, Lionel managed to deliver a stunning 709K single-band 10 meter score of 1680 QSOs, 36 zones, and 130 countries, operating from the outskirts of Phoenix, AZ (see photo). In his "spare time," Lionel works for NXP, known for making most of the LDMOS devices used in today's solid-state amplifiers.

The Director's Thoughts...

In this year's analysis, we clearly saw an overall reduction in cheating and abuse of the rules. However, there remain a few items that I want to highlight as we look forward.

If you choose to continue to use assistance tools as a single, unassisted operator, we will very likely uncover your tactics. The same is true for self-spotting. Without disclosing all the details, the committee now possesses the ability to listen to virtually any QSO in the contest due to the implementation of our global SDR network.

Another area of concern is in the signal quality of a few stations. Whether it's a dirty amplifier, high power, or a simple matter of turning the knobs too high, complaints were registered and we followed up by listening to recordings and issuing warnings. Keep in mind that the rules are quite specific about this issue and stricter measures are likely next year.

One final note has to do with signing callsigns. It's tempting to quickly work 5 or 10 guys in a row without signing your call. Unfortunately, that's incredibly frustrating to the folks on the other side and frankly, non-compliant with the rules.

So, with the above being said, you've been warned. But, more importantly, my sincere thanks go to the majority of you that take the goal of fair play seriously in your station usage and operating style. All of you in this group are the true winners of our contest!

Some Final Accolades

Somehow the years have flown by as this is now my fifth year serving as your CQ WW Director. I can't emphasize this point enough – producing the CQ WW results is an enormous team effort. The heavy lifting takes place by an amazing group of dedicated contesters to whom I offer my sincere thanks. In particular, this year's team was: AA3B, Bud Trench; CT1BOH, José Nunes; EA4KD, Pedro Vadillo; ES5TV, Tonno Vahk; F6BEE, Jacques Saget; G0MTN, Lee Volante; HA1AG, Zoli Pitman; IK2QEI, Stefano Brioschi; JH5GHM, Katsuhiro (Don) Kondou; K1DG, Doug Grant; K1EA, Ken Wolff; K3LR, Tim Duffy; K3WW, Charles Fulp; K5ZD, Randy Thompson; KR2Q, Doug Zwiebel; LA6VQ, Frode Igland; N9RV, Pat Barkey; OH6LI, Jukka Klemola; PA3AAV, Gert Meinen; RA3AUU, Igor (Harry) Booklan; S50A, Tine Brajnik; S50XX, Kristjan Kodermac; UA9CDC, Igor Sokolov; VE3EJ, John Sluymer; VK2IA, Bernd Laenger; YO3JR, and Andrei (Andy) Ruse.

The next CQ WW SSB contest will be here sooner than you think. And, with conditions being better than ever, I hope to work you in October!

73, John, K1AR

CQ WW Contest Director

Exploring from Romania

Our Team YR0K chose to operate in the EXPLORER category, setting up two sites for our station design. The first contest station was located in a Parks on the Air (POTA) area with the other one being approximately 20 Km from our club shack. We used the prestige of participating in the CQ WW to entice as many kids as possible to experience amateur radio via this operation.

The YR0K team for the 2023 CQ WW SSB Contest consisted of kids under 14 years old, all of which had their license for less than one year (see photos)! In fact, most of our operators were actually 10-year-olds and used no more than 50 watts according to their license restrictions.

We are proud to support one of the European Radio Operator's Organization's (EURAO) key goals, which has declared 2023/4 be the year to support kids in the CQ WW and to develop many of them in becoming future hams! Because of the support from the Explorer category and the CQ WW overall, we expect to see many more kids and teams of kids in future CQ contests!

73, Petrica, YO9RIJ YR0K Manager

Number groups indicate: QSOs/Zones/Countries on each band

Station	160	80	40	20	15	10
8P5A	33/5/12	520/15/67	1271/27/90	2550/36/102	2444/34/106	3666/32/113
6Y1V	82/6/14	437/15/61	1851/27/100	2524/34/107	2478/35/107	3003/26/102
EA8RM	69/9/35	193/12/48	704/21/67	1514/25/78	2197/33/104	3877/33/101
*PZ5CO	0/0/0	90/10/29	623/29/92	1885/32/104	1036/31/104	2787/34/118
HQ9A	72/7/10	216/15/34	851/25/75	1827/31/99	2377/34/107	2333/28/106
N5DX	74/10/32	229/18/63	1061/24/90	1475/33/109	1442/29/105	1209/28/104
XL3A	132/10/13	525/17/54	1042/21/77	1488/35/107	1505/29/102	1291/22/97
K1LZ	61/9/28	218/11/51	1064/25/86	1178/31/105	1582/27/95	1270/25/93
CT3KN	14/4/11	95/10/42	128/15/54	1236/25/78	2057/31/96	1956/32/95
IR2Q	178/10/42	561/11/56	634/24/80	1410/32/109	1431/33/101	1453/33/100

WORLD SINGLE OPERATOR ALL BAND

WORLD SINGLE OPERATOR ASSISTED ALL BAND

Station	160	80	40	20	15	10
PT5J	15/8/10	74/16/35	226/27/81	1266/38/116	1650/37/122	2886/36/140
P40W	12/4/12	128/15/50	531/24/82	1164/31/98	1614/33/116	2648/30/116
ED5D	26/6/18	313/13/66	1047/27/91	1309/36/115	1928/35/117	2356/35/120
NP4Z	35/7/17	311/14/57	879/27/93	1566/35/107	1258/34/109	2565/32/131
ES7A	207/8/48	588/18/82	1269/33/120	933/38/133	1592/39/141	1414/36/142
S53MM	146/9/51	540/15/75	731/28/103	1231/37/130	1308/38/128	1120/37/135
ED8M	50/6/17	449/13/61	626/22/81	913/26/93	1471/30/103	1136/29/110
IP3A	87/5/45	435/12/70	595/26/97	1131/34/120	1260/36/127	1297/37/135
LY4A	320/12/58	1001/ 19/ 78	1285/30/100	1500/34/102	1276/32/109	1082/34/116
IR1G	103/7/48	529/16/76	884/30/106	1120/37/126	853/35/118	1071/38/132

WORLD MULTI-OPERATOR SINGLE-TRANSMITTER

Station	160	80	40	20	15	10
P33W	165/13/61	418/18/87	1183/30/113	3056/38/142	2746/36/142	3600/38/154
CR3DX	126/10/54	544/21/82	1128/29/106	2160/36/133	2666/38/136	4380/36/154
D4C	111/11/51	152/19/72	607/29/94	2616/36/130	2644/38/138	4605/36/156
V47T	45/10/29	382/19/77	1276/30/108	2899/37/131	3223/38/132	4176/35/144
PJ4G	17/8/17	261/18/67	1421/28/101	1181/36/123	1389/37/128	4043/35/134
E7DX	102/11/59	636/21/89	1540/32/127	1934/39/143	2635/39/146	2356/38/153
IR4X	85/9/54	286/17/79	1538/34/124	1114/38/135	2316/39/146	1807/38/150
EW5A	266/13/61	716/21/85	1519/34/125	1658/38/136	2101/36/139	2305/37/151
KP4AA	32/6/17	349/17/73	877/25/97	1954/37/129	1826/36/126	2443/35/139
9A7A	49/8/49	484/16/73	1309/31/113	894/38/134	2000/39/139	1893/38/144

WORLD MULTI-OPERATOR TWO-TRANSMITTER

Station	160	80	40	20	15	10
PJ4K	122/13/27	701/25/79	2651/30/117	3195/38/125	4351/37/141	4948/37/141
ZF1A	99/7/18	400/15/64	2475/28/106	3533/36/123	3436/35/130	4188/35/143
CR6K	136/10/48	879/19/80	1610/33/116	2195/40/136	3961/38/139	3196/37/151
PX2A	1/1/1	39/13/21	319/27/80	1466/36/111	2981/37/130	4149/34/133
W3LPL	47/9/34	440/17/74	930/28/101	1056/36/130	2178/38/137	2276/35/145
TO5A	24/5/5	286/16/52	1293/29/96	2277/34/113	2607/35/120	3156/34/121
9A5Y	212/12/55	1023/18/80	1481/26/102	1941/37/125	3235/37/134	1700/36/135
II2S	209/7/51	1068/17/76	1698/31/114	1784/39/134	2348/39/136	1598/38/144
ED1R	202/11/52	856/19/81	1432/30/111	1770/36/133	2839/36/126	2452/37/144
VE3VN	113/9/13	466/15/58	1412/26/99	1556/36/118	1825/35/116	1448/31/130

WORLD MULTI-OPERATOR MULTI-TRANSMITTER

Station	160	80	40	20	15	10
CN3A	427/11/54	1703/24/91	2854/32/119	5009/38/141	5626/39/150	6375/38/159
K3LR	358/15/42	877/24/86	1820/34/120	2614/39/155	2997/39/150	2361/38/152
PJ2T	71/10/20	570/20/67	1957/28/103	2918/37/119	3486/37/123	3283/30/113
V26B	56/8/18	503/17/64	1819/24/92	3458/37/122	3750/37/124	3984/35/124
9A1A	872/15/68	2154/22/97	3024/31/120	3247/37/138	2977/37/138	1563/37/134
M6T	725/12/59	1958/21/93	3522/34/130	2695/38/140	2338/39/143	1862/36/147
YT5A	583/11/59	1749/15/79	3257/31/125	3436/38/140	3067/38/144	2037/37/144
LZ9W	585/11/60	1453/20/88	2621/32/123	3694/38/140	2602/38/139	2438/38/147
DF0HQ	796/12/63	1848/20/92	2955/33/125	2704/37/146	2131/40/145	1564/38/149
KC1XX	89/11/33	340/17/72	1538/27/105	1966/38/127	2358/34/124	1934/36/146

USA SINGLE OPERATOR ALL BAND

Station	160	80	40	20	15	10
N5DX	74/10/32	229/18/63	1061/24/90	1475/33/109	1442/29/105	1209/28/104
K1LZ	61/9/28	218/11/51	1064/25/86	1178/31/105	1582/27/95	1270/25/93
K4ZW	22/7/12	131/14/55	351/24/73	625/32/97	1048/32/108	1094/31/103
K5TR	23/7/13	55/12/32	668/27/79	591/33/97	1025/33/100	1552/32/108
W9RE	22/6/11	92/13/44	561/22/81	556/31/97	1327/33/102	809/26/90
NR3X	30/6/15	121/12/51	337/20/72	770/29/102	1023/32/101	980/26/102
K4AB	25/7/15	150/16/55	172/23/70	476/31/102	1233/33/112	941/29/110
K5GN	19/6/10	48/11/32	379/26/75	515/32/102	1121/32/107	1241/29/108
N2IC	9/7/7	93/17/35	400/26/64	280/30/89	914/34/107	1153/32/99
ND7K	13/6/6	126/14/25	703/28/66	360/29/71	872/29/86	1220/30/97

USA SINGLE OPERATOR ASSISTED ALL BAND

Station	160	80	40	20	15	10
NU4E	30/9/14	179/17/64	257/25/80	670/34/111	1302/37/121	930/32/128
K3WW	36/9/23	209/15/66	239/24/84	786/31/111	761/32/109	1146/32/124
AA3B	40/9/24	307/12/57	235/21/76	711/33/108	860/30/110	1111/28/118
N2SR	4/2/2	57/14/46	148/20/69	575/36/108	1079/33/113	1302/33/127
N3RS	13/5/8	164/13/59	194/25/80	430/35/111	814/37/119	982/34/140
K1KI	11/5/5	142/12/49	166/21/70	758/33/109	900/31/108	903/28/127
AB3CX	29/7/18	247/14/59	335/22/78	395/30/101	584/30/104	1002/30/130
N2NT	13/3/5	94/10/49	226/22/73	577/28/97	1315/28/107	327/24/87
*NN7CW	5/4/4	148/14/61	184/23/63	433/32/102	585/29/98	900/33/115
AA10N	33/8/17	172/14/57	146/21/65	369/30/103	374/31/106	934/29/128

USA MULTI-OPERATOR SINGLE-TRANSMITTER

Station	160	80	40	20	15	10
N4RV	13/6/12	183/16/63	233/26/87	370/34/113	1123/36/127	619/31/133
NJ4P	10/4/5	70/15/56	195/26/80	427/36/117	771/36/121	774/33/133
KQ3F	4/3/3	80/13/45	139/20/68	317/29/98	615/30/103	1075/28/122
WW4LL	3/3/3	106/14/50	327/24/79	352/31/107	479/35/110	786/30/119
K1VR	4/3/3	131/14/57	204/21/75	324/29/96	539/28/97	663/27/117
K5KG	1/0/1	0/0/0	283/18/67	219/29/95	654/28/104	697/26/116
*NT0K	0/0/0	48/11/32	134/18/55	240/27/84	408/28/96	655/25/103
K2DM	11/4/7	44/11/29	141/21/66	302/33/97	456/28/95	417/30/109
NV9L	0/0/0	57/11/41	153/22/67	221/28/90	284/27/91	439/29/107
K9YY	3/3/3	23/7/16	120/21/60	297/28/90	373/29/94	403/30/97

USA MULTI-OPERATOR TWO-TRANSMITTER

Station	160	80	40	20	15	10
W3LPL	47/9/34	440/17/74	930/28/101	1056/36/130	2178/38/137	2276/35/145
K1RX	32/10/19	356/17/71	535/24/90	1192/38/120	1800/34/124	1350/31/135
N2AA	38/9/22	323/15/67	309/24/85	1211/33/119	1339/36/117	1265/31/130
K2AX	27/7/13	234/15/66	248/21/80	800/35/116	1458/36/120	1360/35/135
K9CT	36/7/10	205/18/62	326/24/80	814/36/113	1458/36/121	1126/35/127
W4NF	18/7/9	164/13/55	391/20/78	644/31/107	1082/33/117	958/33/126
KA1ZD	25/7/17	118/15/60	190/26/82	441/34/111	880/35/116	982/32/133
N7DX	15/4/3	89/13/26	390/28/75	779/35/118	1008/34/110	773/28/78
AA4VT	18/4/5	249/16/65	299/23/82	564/31/103	679/32/109	959/29/120
WG3J	6/2/2	60/9/32	157/15/57	174/26/79	566/22/87	371/24/90

USA MULTI-OPERATOR MULTI-TRANSMITTER

Station	160	80	40	20	15	10
K3LR	358/15/42	877/24/86	1820/34/120	2614/39/155	2997/39/150	2361/38/152
KC1XX	89/11/33	340/17/72	1538/27/105	1966/38/127	2358/34/124	1934/36/146
WX3B	32/5/9	265/19/73	563/24/90	1813/35/123	2200/35/128	1488/33/122
K1TTT	73/7/16	266/17/71	729/27/99	1124/37/125	1889/35/123	1247/30/131
K9RS	21/6/11	276/16/67	289/24/87	643/36/122	1246/36/125	1439/34/140
W3PP	45/10/31	207/14/67	245/22/78	1056/35/119	1230/37/118	953/31/125
K3EST	35/8/7	255/19/32	636/28/75	906/38/112	1045/35/119	1046/33/106
W2A	9/4/4	52/14/40	187/20/71	1097/34/113	1211/34/113	916/30/120
K1KP	0/0/0	172/11/54	180/20/68	351/27/99	390/29/97	706/28/118
NE3F	10/4/4	132/11/52	170/20/64	333/30/100	625/29/101	546/26/109

EUROPE SINGLE OPERATOR ALL BAND

Station	160	80	40	20	15	10
IR2Q	178/10/42	561/11/56	634/24/80	1410/32/109	1431/33/101	1453/33/100
9A1P	132/6/42	324/14/56	1123/27/86	1040/35/107	1274/35/111	1607/37/120
OM0R	221/7/46	600/16/66	975/25/87	675/30/94	1699/36/112	1539/35/100
OM2VL	280/11/51	443/16/63	931/28/96	751/32/110	1141/33/104	1295/36/107
EA2W	57/7/32	336/14/60	463/20/72	1100/32/96	1443/35/104	1659/36/113
IY3A	161/5/39	396/10/54	417/24/79	830/33/106	1694/36/116	1007/32/101
UW5Y	47/6/26	294/10/55	1039/21/83	1307/27/93	1199/31/94	1302/36/109
S50G	94/5/33	357/13/54	600/24/80	993/29/90	1338/31/92	1262/34/90
IR2M	152/6/41	488/11/53	651/22/72	827/34/104	1272/31/93	1136/33/95
ES5G	242/8/45	538/14/52	842/25/84	1217/30/91	1367/33/105	1016/31/88

EUROPE SINGLE OPERATOR ASSISTED ALL BAND

Station	160	80	40	20	15	10
ED5D	26/6/18	313/13/66	1047/27/91	1309/36/115	1928/35/117	2356/35/120
ES7A	207/8/48	588/18/82	1269/33/120	933/38/133	1592/39/141	1414/36/142
S53MM	146/9/51	540/15/75	731/28/103	1231/37/130	1308/38/128	1120/37/135
IP3A	87/5/45	435/12/70	595/26/97	1131/34/120	1260/36/127	1297/37/135
LY4A	320/12/58	1001/19/78	1285/30/100	1500/34/102	1276/32/109	1082/34/116
IR1G	103/7/48	529/16/76	884/30/106	1120/37/126	853/35/118	1071/38/132
HG8R	69/7/39	516/14/66	1091/26/97	825/37/118	1202/34/128	1225/38/139
RK4FD	105/12/48	330/17/69	922/27/103	1352/35/125	1505/36/128	1859/36/140
S57AL	77/8/45	452/15/67	1171/28/99	1154/35/118	840/35/117	993/35/136
SO9I	118/8/48	377/15/63	585/24/88	1035/35/110	1117/35/118	1019/34/121

EUROPE MULTI-OPERATOR SINGLE-TRANSMITTER

Station	160	80	40	20	15	10
E7DX	102/11/59	636/21/89	1540/32/127	1934/39/143	2635/39/146	2356/38/153
IR4X	85/9/54	286/17/79	1538/34/124	1114/38/135	2316/39/146	1807/38/150
EW5A	266/13/61	716/21/85	1519/34/125	1658/38/136	2101/36/139	2305/37/151
9A7A	49/8/49	484/16/73	1309/31/113	894/38/134	2000/39/139	1893/38/144
IR6T	52/9/52	343/16/75	1247/29/112	1593/38/135	1662/39/135	1562/37/142
TM6M	114/7/40	648/16/78	925/28/103	1496/38/132	2249/39/128	1369/38/150
SP8R	99/11/55	564/18/75	1595/30/116	2273/38/140	1459/40/139	1083/37/143
RU1A	94/10/53	566/20/78	1749/34/122	1783/36/134	1826/39/145	1366/37/147
EI7M	122/9/47	526/21/79	798/29/115	1189/37/125	2123/38/132	1788/36/134
RL3A	260/15/61	642/19/81	1094/34/124	1598/38/135	1475/39/149	2379/38/153

EUROPE MULTI-OPERATOR TWO-TRANSMITTER

Station	160	80	40	20	15	10
CR6K	136/10/48	879/19/80	1610/33/116	2195/40/136	3961/38/139	3196/37/151
9A5Y	212/12/55	1023/18/80	1481/26/102	1941/37/125	3235/37/134	1700/36/135
II2S	209/7/51	1068/17/76	1698/31/114	1784/39/134	2348/39/136	1598/38/144
ED1R	202/11/52	856/19/81	1432/30/111	1770/36/133	2839/36/126	2452/37/144
DP7D	196/7/48	871/18/75	1013/30/107	1136/36/127	1482/37/127	1752/37/142
S53M	140/8/47	820/15/74	1817/31/117	1208/35/119	1513/38/124	951/36/132
HG7T	129/6/39	749/15/67	1296/29/115	1627/38/129	1361/35/122	1595/37/140
II9P	53/7/34	351/14/59	1464/27/85	1983/35/107	1934/37/116	1858/33/118
CR6P	43/4/13	674/12/62	1124/21/79	2342/32/107	1852/34/114	1298/22/73
DR4A	255/7/49	654/13/64	1273/29/104	1083/37/120	1158/35/126	786/37/129

EUROPE MULTI-OPERATOR MULTI-TRANSMITTER

Station	160	80	40	20	15	10
9A1A	872/15/68	2154/22/97	3024/31/120	3247/37/138	2977/37/138	1563/37/134
M6T	725/12/59	1958/21/93	3522/34/130	2695/38/140	2338/39/143	1862/36/147
YT5A	583/11/59	1749/15/79	3257/31/125	3436/38/140	3067/38/144	2037/37/144
LZ9W	585/11/60	1453/20/88	2621/32/123	3694/38/140	2602/38/139	2438/38/147
DF0HQ	796/12/63	1848/20/92	2955/33/125	2704/37/146	2131/40/145	1564/38/149
OT5A	590/11/57	1398/13/67	2303/28/104	1642/39/121	1509/36/119	1186/34/128
LN8W	599/12/58	1160/18/81	1630/32/116	1844/36/125	1418/38/134	947/37/140
TM1A	277/5/41	714/11/58	1243/26/96	1519/33/115	742/35/110	871/32/120
M6C	352/8/44	1142/13/63	1484/20/83	1498/31/108	519/27/93	394/28/98
PI4CC	136/6/35	530/12/51	545/20/74	759/29/96	417/31/106	533/31/111

2023 CQ WW SSB TOP SCORES

WORLD SINGLE OPERATOR HIGH POWER All Band

8P5A (W2SC)16,139,862	
6Y1V (LU9ESD) 15,079,056	
EA8RM13,620,224	
HQ9A (VE3DZ) 10,390,487	
N5DX10,047,165	
XL3A (VE3AT)8,629,768	
K1LZ	
IR2Q (IK2PFL)7,743,001	
9A1P (9A1UN)	
OM0R (OM3GI)7,442,520	

3.7 MHz

· · · · · · · · · · · · · · · · · · ·	
IROA (ISOJHQ/200,788 OK8WW)	
IB3M (OE6MBG) 167,400	
E71A 159,960	
UT5EL 108,532	
SP7MC 77,100	
EE7L (EA7HLU)72,668	
W3BGN 59,432	
YO3VU 47,775	

14 MHz

EC3CVD 426,320
PY2NY 417,312
YV4EK
UT3EV 313,920
CO8RH
IS0GRB173,400
F4EIH109,052
RZ3Z 96,348
M1G (G0UWS) 94,607
DL9ZP 86,128

28 MHz

PY2BN 163,592
LY5G 73,225
IZ4AIF
SY1AEA 51,216
YO8TK 46,350
JE3EDJ 39,846
G4CWH38,448
SQ8MFB31,902
IT9NAN 30,800
LU7VCH 26,096

VR2XAN 1,340,577 4L8A 1,188,876 CE3CT 1,063,622 VK4KW (VK4BAA) UPOL (UN9LW------855,884 LU8EGG 836,094 AZ6H (LU3HIP)------809,973 9N7AA (S53R) ----- 763,155

28 MHz

1.8 MHz

IR9W

LX1NO 73,512	
OK4U (OK1TP) 26,345	
EI5GUB 14,040	
GW2X (GW0DCK)11,856	
DL6MHW	
YT2ZZ7,728	
VE3HJ 4,840	
SV2GJV 1,920	
DK3AX	
JH9URT 56	

7 MHz

EA8DEG 176,443
E7AA (E70Y) 107,604
CO2JD 103,464
R3PLN
BU2GA64,064
HA6VV52,470
OZ4NA22,464
IU5ICR 48,488
UV2IZ41,334
SP4CUF41,238

21 MHz

FY5FY
TA2IB89,206
JR4DAH 70,959
IZ1ANK42,824
JQ1NGT35,412
CT4QB31,280
7N4WPY29,775
BH4TQX 23,119
JR2EKD21,824
JR1NKN21,344

21 MHz

LOW POWER All Band

7 di Baria
PZ5CO (RA3CO)10,505,077
ZL7IO (ZL3IO)4,542,444
WP3C4,420,632
4Z4AK3,672,027
N1UR
RM9I2,696,828
LY4L2,685,798
CR2B (EA1BP)
HA3NU2,119,260
BD4VGZ 1,637,709

3.7 MHz

PA2TMS 115,920
F5BEG 35,035
LY7X (LY3DA) 33,099
SP6DZ 29,028
G4CDN 24,318
SP4AWE 23,684
SQ9MR 23,274
YO8VET 18,704
WZ6ZZ120
HA6I (HG6IA) 13,338

14 MHz

S51Z 70,200
YU1NR 41,612
YO3JOS 21,084
SQ4CTM 18,117
HF5WIM 14,144
SP5ENG 9,240
YO4BEX9,145
IZ5OVP8,906
I3MTM
YB1DFE4,182

14 MHz (OH6UM) 1,001,765

OH8X

DM0A (DK3DM) 949,611
YT7B 693,392
W7WA 638,172
OM5R (OM5WW) 519,827
EA8CYU
CE3QY 213,858
JA7FTR
YB1DX
ZL7/SP5EAQ (SP5EAQ) 174,624

28 MHz

(P2B (EB7DX) 817,215	
P4PR 686,610	
/R2T (VR2ZQZ) 583,894	
T7F (LU6FOV) 476,036	
N8II 341,384	
50A 390,616	
X2BAH	
CU4AT 304,029	
T9XTP 291,312	
A3VAK	

1.8 MHz

SNOR (SQ9IAU)	··27,956
SQ9PPT ·····	936
SP6LUV ·····	3,384
_C9X (LA9XGA)	2,480
SP7SEW	1,431
DL8AAE	1,408
JT4WT ·····	1,372
SP2BP	1,144
R3LCV	924
YO8RZJ ·····	357

7 MHz

OK6OK	26,151
SN9Y	11,718
E74BMN ·····	9,359
NP3F	8,600
SN9U (SP9NSA)	8,512
ON4ANE ······	6,345
R4ZZ	2,146
YB6IVW ······	1,325
JR1ABS ·····	1,170
DU1JW ······	1,044

7 MHz ED5R (EA5Z) 690,900 4L2M 542,931 HA4A (HA4FF) 129,789 TI2JS ----- 83,912 I5NSR ------..28,215 LZ2AO23,002

21 MHz FK8GM 409,374 EF3W (EA3CX)------ 398,880 7S2A (SA2SAA) 255,136 PY2QT------185,148 JJ1RJR ------ 167,508 7K4XNN 155,760 UN0LM 155,756 L71D (LU7DUE) 144,026 EA8TR 140,904 SP8IMG 119,970 (SP8MG)

QRP All Band

K1ZM	1,186,338
LY9A	585,750
ES6RW	523,796
LZ5Y (LZ1YE) ······	498,440
YV6BXN	402,426
SO2U	287,455
JH10GC	228,984
UN7EG	222,955
VA2IW	206,883
UT4UBZ	204,660

3.7 MHz

OL4W (OK1IF)19,227
PA0AWH 4,092
JH1APZ 48
SQ3AH26

1.8 MHz

HA1TI
LY4T 2,088
OZ6OM 621
UR5FEO 210

SINGLE OPERATOR ASSISTED HIGH POWER All Band
PT5J (PP5JR) 11,376,612
P40W (W2GD) 10,672,337
ED5D (UT5UDX)
NP4Z 10,074,948
ES7A (ES7GM) 8,248,434
S53MM
ED8M (EA8DIG) 8,076,606
IP3A (IK3QAR) 7,829,856
LY4A 7,651,956
IR1G (IZ1LBG) 7,390,090

3.7 MHz

HA1TJ 248,994
S56B 178,451
GW9J (GW0GEI) 143,100
9A8M (9A7DM) 137,256
MI5K (MI0SLE) 121,030
SN9B (SQ9OB) 98,112
YU1LD
W3NO42,570
EA7JZR 38,880
DL3LAB

14 MHz

YU5M362,043
HK3EA351,709
OK1K (OK1XOE)219,248
SP2RBA134,196
SP6DVP104,864
YT7E90,334
E74TM85,012
EA1DHB82,836
IZ8EFD 78,430
SQ7OFL70,600

28 MHz

HZ1LG169,638
CO2QU
DH8BQA143,748
UN4L133,996
LY1FW124,062
IZ2KPE 106,821
SP7M69,795
LY2OU
UY5LW
SV1NK

28 MHz

1.8 MHz

S56X	52,824
SP5ELA	31,626
SP3GTS ·····	30,912
HA8BE ·····	28,670
UR7U (UT6UD)	25,594
RM4F	24,637
DF9LJ ·····	19,215
DK3GG	1,518
MM0GOR ······	
EA8TH ·····	120

7 MHz

КРЗН	251,637
HK1J	140,709
F1DHX ·····	98,468
HA6NL	91,980
EE3O (EA3O)	81,320
SP3AYA ·····	78,470
OA4DKN ······	64,862
HG6K (HA6AK) ·······	63,630
OM6TX	42,398
SP7JS ·····	41,735

21 MHz

HG1S (HA1DAE)	161,136
PA5DX ······	-126,294
SP5PDA	50,508
HG3C (HA3HX)	38,313
EA5JDC ······	26,220
SP4NKJ ·····	24,600
IZ2QKG ·····	4,485
ТАЗЕ	4,212
GW5P (GW0EGH) ···	······2,046
YF3AJJ ·····	351

21 MHz

DF7A (DL2ARD) 1,437,260	
S50K 1,431,864	
VA2WA 1,284,860	
UB7K 1,096,560	
SN3A (SP3GEM) 1,049,631	
LZ5K (LZ5QZ)799,520	
JJ0PKS (JH7PKU)700,338	
BD7MM (BA7JA)677,850	
OG6N (OH6NIO) 636,120	
OK8NM (OM6NM) 613,744	

LOW POWER All Band

PY7ZC	,009,177
NN7CW	,510,772
TM3Z (F4DSK)	,297,294
9A6KX2,	,389,327
UZ7M (UT9MZ) 2,	,344,680
UP7L (UN6LN) 2,	,151,617
OL9R (OK6RA) 1,	,863,372
SP7Y1	,726,018
EU2F1	,675,044
ZW2T (PY2RKG)1	,611,612

3.7 MHz

LA2AB (SP2ASJ) ······	- 67,486
OK2BFN	59,059
SP2N (SQ2HCW) ·······	52,851
YT2SIN	-47,502
OU8A (5P0O)	38,912
OM5KM	-35,904
SQ8NGV	35,217
M1U (M0UTD)	22,168
DJ7GS	14,148
SP5IVC	-12,532

14 MHz

K3TW	57,371
OE3MDB	
IU5RFA ·····	1,260
PA2REH ······	418

7 MHz

DL6JF 19,039
IO5K (IK5TBK)17,374
OU2V (OZ1FJB)5,002
JH3DMQ1,386
YF7RDM931
YC1REO54
VE3LDE 32

14 MHz

HA8A (HA8DZ)1,2	239,084
YT3X1,2	215,044
F4DVX1,	120,140
S57DX1,0	050,920
EF8K (EA8DET)	934,332
HG5E (HA1AH)·······	875,289
SV9FBG	773,325
SP4TKR	758,670
S51YI	745,448
F8DVD ······	575,924

28 MHz

PS0F (PY7RP)830),264
PU5FJR616	,350
TI1K (TI5CDA)608	3,966
PY2HT537	,030
PU1JSV530	,400
PU5BIA520	,149
PY2CX495	,535
HI3T 456	,430
LY7Z 422	,572
CO6HLP 400	,095

1.8 MHz	
LC1P (LA1DSA)	2,130
SN6S (SP6ZC)	240
4Z5PN	120
IZ5OQX ·····	
3.7 MHz	
SQ9SX	960
VA3OGG ······	287
1.8 MHz	
708WW	728

MULTI-OP SINGLE-TRANSMITTER HIGH POWER All Band

mannowe	
P33W	27,689,488
CR3DX ·····	26,578,885
D4C	25,195,050
V47T	23,150,160
PJ4G·····	17,297,160
E7DX	16,725,462
IR4X·····	14,325,800
EW5A	13,524,564
KP4AA	13,368,443
9A7A	·····12,080,112

7 MHz

YT1A 617,661
G8X (G4FJK) 353,536
YT0W (YU1JW) 328,155
TI1T (TI2CC) 289,527
JH7MQD 242,991
N5RZ 161,840
9A3K 126,140
YT3K 101,926
PY5QW98,777
S57096,720

21 MHz

IH9/OK1M	.943,297
IK4LZH	·676,939
TA3D	·585,910
UC9A	·465,280
KP4PUA	·330,835
IT9STX ·····	·286,740
TA7AZC	·277,306
CT7BJG ·····	268,214
SP9XCN	254,606
N4IJ·····	·194,740

QRP All Band

OM0RX	1,071,714
ES2MC	629,736
YB0SSF ······	
YO8FC	288,252
SQ5CW ······	166,668
W3EK	·····129,903
IZ0FUW/5	127,926
PC2F	122,265
F4JJY	96,664
PE2K	

LOW POWER All Band

ZF2B ·····	8,899,003
VP5M	6,514,722
ZW5B	6,060,000
IB9T·····	5,202,527
IO3F	4,420,584
IR9K	4,152,023
ED70	3,734,656
PS2F	3,072,000
LZ8E	2,903,417
E7CW	2,877,550

MULTI-OP TWO-TRANSMITTER All Band

РЈ4К	37,319,130
ZF1A	24,243,880
CR6K	20,233,136
PX2A	15,714,192
W3LPL	15,007,328
T05A	14,514,060
9A5Y	14,431,279
II2S	14,282,366
ED1R	14,080,080
VE3VN	11,818,408

LOW POWER

EA5JEG722,528
VE3GJP708,495
KY4KP660,824
HZ1MW576,422
IV3JAK551,968
LZ8GT534,520
VE3RGO433,329
4X5IC391,168
HI8AN308,856
YE1BMZ285,760

UNITED STATES SINGLE OPERATOR HIGH POWER All Band

	Dania
N5DX 10	,047,165
K1LZ8	,459,496
K4ZW 5	,352,564
K5TR5	,069,331
W9RE5	,067,940
NR3X (N4YDU)	,871,736
K4AB4	,810,131
K5GN4	,373,040
N2IC4	,020,450
ND7K (W4IX	,695,843

3.7 MHz

W3BGN 59,432	
W1HI25,854	
W1FQ14,274	

MULTI-OP MULTI-TRANSMITTER All Band

CN3A	56,548,352
K3LR ·····	24,913,098
PJ2T	24,409,175
V26B	22,934,340
9A1A	21,905,062
M6T	20,681,020
YT5A	19,592,916
LZ9W	19,527,782
DF0HQ ······	18,559,800
KC1XX ······	16,896,110

CLASSIC HIGH POWER

HIGH POWER		
P49Y (AE6Y) ·····	6,768,909	
CT3KN	4,230,688	
ED8W ·····	3,433,368	
4U1A (OE1ZZZ)	3,239,405	
UW1M (UR5MW)	2,977,542	
S50G (S56M)	2,823,546	
YT3D	2,516,496	
V3A (V31MA)	2,420,759	
9A9R	2,249,382	
CE8EIO ······	1,942,956	

28 MHz

K1TO 658,980
K0EJ 668,913
KU2M 632,237
K1RM 433,222
K4JPD (N4OO) 576,190
N4OX 557,454
N1PGA 445,738
K9BGL 330,075
W4DD
W6AFA 263,204

LOW POWER All Band

N1UR	3,260,735
K1BX	······1,554,960
K5WA	1,090,564
WW4XX (LZ4AX)	1,707,776
AC0W	
K5FUV ······	821,784
N1NQD	815,721
K8ZM	756,700
КҮ4КР	
NE8P	

EXPLORER SINGLE-OP HIGH POWER All Band

711 20110
S53K476,984
DK5AV413,051
SO5CAL261,856
IZ8GCB
9A1DR 98,193
PY2YAS 12,341
VE3VC 1,665

LOW POWER

K1BX1	,554,960	
9Z4A (N2TTA)1	,331,694	
WW4XX (LZ4AX)	,707,776	
LZ6E	950,478	
IK1JJM······	716,398	
NE8P	655,776	
DP5P (DL1MHJ)	805,068	
LZ5Y (LZ1YE)	498,440	
HZ1DW ·····	470,436	
UA3BL	467,152	

21 MHz

K2SSS
N7RQ
KE8FT 150,516
K0BBB 109,494
KC9OP66,132
KC0V64,448
N5KF53,361
W9MS7,632
N8AID6,162
K3ISH

28 MHz

N8II 341,384
N1WRK161,095
W2VRK 82,820
W9ILY 70,168
K5FK 69,894
WB0LQC 63,910
N9XX 52,124
KN4UQM 48,576
KW6AA
KA8JBK

YOUTH HIGH POWER

SO9I (SQ9ORQ)	6,100,872
YT0C	5,217,096
ES5G (YL3JA)	4,810,428
DL3ON	4,631,728
DM7XX	2,610,848
DK6SP ······	2,430,361
TM5GGU (F4IEY @ ······· F6KGL)	······709,136
9A3BWP	366,444
VE3FCT ······	
YU7RCI	327,887

14 MHz

W7WA638,172
N7TU (K2SS) 68,770
NI0K58,038
N1SIX4,608
AD0TZ 1,881
N5KAE
K3TEF 480
KU4VY 200

21 MHz

WA7BNM107,520
K9RO91,868
KD2KW76,812
W6DVS61,824
N9HDE14,553
W0JIM 11,985
W4ATC (KN8U)
K5LGX888
K6JS/M345
AE6YB140

ROOKIE HIGH POWER

HIGH FOWER	
YT3EWW ······	1,513,515
W9DCT	770,469
OH8RX ······	622,336
BG2AUE ·····	549,488
W3FR ·····	498,128
КЗАК	476,966
DM1KM ······	397,488
OT6P	383,995
N3BMX	349,934
N3AML	259,530

LOW POWER

BD4VGZ ·····	·1,637,709
HA1BB ······	635,687
SP3GTP ·····	429,336
YO8OLY	382,136
TA7AZC ······	277,306
LY1LB ······	234,384
S56V (S52KJ)	212,352
OE5EBE ·····	206,565
SV8SYK ······	197,080
DJ4MX ·····	191,216

7 MHz

WF2W)
NB2P 22,357	,
N3MWQ)
K9CJ 20,661	
AA0MQ 9,072	2
WD0BGZ 7,685	5
K6IRF2,822	,

14 MHz

W7EDC ·····	22,152
W3CF	15,400
K1SM	11,880
KC1RLS ······	9,222
N2OIG	5,624
W8GOC	5,043
N9CI	2,546
NG2S	······ 2,262
W1DFW	1,708
AJ4FJ ·····	1,311

7 MHz
K7BWC1,860
KD9AC448
N7GRC49
K8TX28
AI7CR 6
N0ZTO6

1	4	٨	Λ	F	4	7

KD8LVF ------ 140

7 MHz

N5RZ 161,840
K7ZSD96,657
WA3C90,364
K5TA 44,460
W6KW
KG1E34,111
W4TTY11,952
K3LA

21 MHz

N4IJ194,740
KR2H76,744
WA8ZNC30,514
W8KSC 27,860
W9EBK16,226
NJ4Q6,720
KD9QFU84
W3RFX24

14 MHz

ROOKIE HIGH POWER

W9DCT 770,469
W3FR 498,128
K3AK 476,966
N3BMX 349,934
N3AML 259,530
KC3RRF151,296
KC3SVR 135,519
AJ6TL 104,920
KC4YAO100,606
K9SJP95,284

SINGLE OPERATOR ASSISTED HIGH POWER All Band
NU4E6,151,488
K3WW5,740,680
AA3B5,517,564
N2SR5,183,991
N3RS 4,869,792
K1KI (KM1P) / 789 980

K1KI (KM1P)	4,789,980
AB3CX ······	
N2NT (KI7WX)	3,790,696
A10N	3,439,632
WY3A	3,291,316

3.7 MHz

V

W3NO42,570
WA2BCK26,000
K2RR17,556
W1VT7,788
K7STO

14 MHz

W5CSM 4,760
KA4J (W4YEM) 192
W7VC 48
N5DEA 4

MULTI-OP SINGLE-TRANSMITTER HIGH POWER All Band

N4RV	4,865,292
NJ4P	3,977,296
KQ3F ·····	3,524,864
WW4LL	3,273,050
K1VR	2,956,905
K5KG	2,254,472
K2DM	1,855,530
NV9L	1,591,326
К9ҮҮ	1,590,784
K8AZ	1,426,248

1.8 MHz
N8MRE8
28 MHz
KB3WD917,280
KW7MM709,484
AA9A409,812
N1MM366,132
N6SS
W2AW (N2GM)292,789
K0AP277,400
K3EW270,654
K7WP 246,606
W3FOX224,616

LOW POWER All Band

NN7CW 3,510,772
WE9R 1,298,220
KW1X 905,280
KS1J 824,320
WB8TLI 744,104
KG9X 693,450
N7IR 665,945
AJ4HP619,686
K0XF613,050
KT3T611,010

7 MHz

AA4NP	

N0EO 290,339
<t0v 184,338<="" td=""></t0v>
WA1F
N8YXR 100,010
<a>A8YNW 86,920
AD4XT 73,920

QRP All Band K1ZM ------1,186,338 W6QU -147,630 (W8QZA) ND0C ·97,614 KE0WPA--88,434 WW2G ·31,476 (WU2M) NF2L-----·24,720 NA4CW ···· -22,950 N3CI ·21,565 NS6X -----.15,345

21 MHz

...13,932

WX2P

KM5VI ······	515,160
N1LN	
KY7M (@ NA7TB)	346,408
NC1CC	304,018
W7ZR	124,751
N0RN	91,392
K8FF ·····	82,719
N0AV······	81,070
N0OK	76,104
K6IJ	73,360

QRP All Band

١

	All balla	
W3EK		
NO5V	28,875	

MULTI-OP TWO-TRANSMITTER All Band W3LPL-----15,007,328 K1RX------... 10,016,937 N2AA... --8,421,120 K2AX.. 7,575,603 K9CT… 6,483,279 W4NF ·· •5,545,264 KA1ZD 4,983,280 N7DX-4,244,328 AA4VT.... 4,194,963 WG3J ... -1,530,800

28 MHz

١

W7USA 22,692
KR8T13,100
K9JK11,128
N6AN 11,001
N6HI2,052

14 MHz

W1RCR472,328
WA4JUK
NA2U77,364
K7MS74,760
KK7PW72,912
WS4AM6,192
W6OUL24

28 MHz

N5JR	188,935
N3UA	182,850
W9XT	155,477
W6ZL	85,358
AC50	78,921
W1ZZ	75,924
WA5WFE ······	54,586
KG1V	42,500
N9VPV	39,072
N3ZV	33,726

28 MHz

ко1н	 16,472
WO7T	 15,906

MULTI-OP

LOW POWER

KY4KP	660,824
KF0HCN	255,678
K1MWH	251,720
KZ4MKJ	217,740
KF0IDT ······	·····206,205
N8ACP ······	·····152,234
W3POT	126,720
KR3L	121,625
KD2YNP	95,029
WA4ARB ······	94,977

EUROPE SINGLE OPERATOR HIGH POWER All Band

IR2Q (IK2PFL)7,743,001
9A1P (9A1UN)7,613,112
OM0R (OM3GI) 7,442,520
OM2VL6,962,058
EA2W 6,784,425
IY3A (IZ3EYZ) 6,054,725
UW5Y (US2YW) 5,911,182
IR2M (IK4VET) 5,562,655
ES5G (YL3JA)4,810,428
DD2D

3.7 MHz

E 004

DD0VE 5,984
IROA (ISOJHQ/ OK8WW) 200,788
IB3M (OE6MBG)167,400
E71A159,960
UT5EL108,532
SP7MC
EE7L (EA7HLU) 72,668
YO3VU 47,775
M00IA 12,773
\$55G

14 MHz

EC3CVD 426,320
UT3EV 313,920
IS0GRB
F4EIH 109,052
RZ3Z
M1G (G0UWS)
DL9ZP86,128
YO5GDX
GW5L
OH5TS 61,838

CLASSIC HIGH POWER
WC6H (NU6S)1,691,872
AD5XD 971,889
N5AW 922,354
W1WEF 908,013
W1JQ893,620
N2MF815,859
K0EJ668,913
AE1P640,080
NG1M 634,779
K1RM433,222

28 MHz

IR9W760,456
YL2SM737,184
GM5X (GM4YXI) 726,485
YT8WW639,212
EA2DMH311,423
RT5T293,090
ED5I (EA5IWZ)
CU2AF264,682
CT1EAT222,642
9A7JCY191,646

1.8 MHz

LX1NO 73,512
OK4U (OK1TP) 26,345
EI5GUB14,040
GW2X (GW0DCK) 11,856
DL6MHW 8,736
YT2ZZ
SV2GJV1,920
DK3AX 700
DL7LX 6

7 MHz

E7AA (E70Y) ·····	107,604
R3PLN ······	
HA6VV	
OZ4NA	
IU5ICR ······	
UV2IZ	
SP4CUF ······	41,238
SQ8MZW ······	
OS8L (ON8LX)	18,644
IN3AHO	

LOW POWER

K1BX1,554,960
WW4XX (LZ4AX)
NE8P655,776
WA3LXD
WA5JMZ 443,112
N8II
K4SXT377,243
N1ALO 351,648
N1DC346,620
AI6O

21 MHz	
EF5U (EA5U @EA5Y) 1,071,336	
OG8M (OH8MCT) 836,136	
DM0Y (DL3BQA) 610,400	
OK5D (OK1DTP) 608,796	
LZ6V	
MW8R	
IQ8BB	
YO3RU 184,093	
II4A (IK4ADE) 176,580	
OZ7X 156,600	

LOW POWER All Band

LY4L2,685,7	98
CR2B (EA1BP)2,572,4	85
HA3NU2,119,2	60
DM5EE1,573,0	00
DC4A (DL4NAC) 1,539,8	80
ED3Z (EA3DZ) 1,492,0	78
S57K	00
OL5Y1,147,1	55
YO4RDW1,124,9	91
LZ6E	78

3.7 MHz

PA2TMS ······	115,920
F5BEG ······	35,035
LY7X (LY3DA) ·····	33,099
SP6DZ ······	
G4CDN ······	24,318
SP4AWE ······	23,684
SQ9MR ······	23,274
YO8VET ······	18,704
HA6I (HG6IA) ·····	13,338
IV3EAD	13,281

YOUTH HIGH POWER

KJ7KOJ 50,384	
W1KBN (KF0INO) 38,016	
KK7EXT	

14 MHz

OH8X (OH6UM)	1,001,765
DM0A (DK3DM)	949,611
YT7B	693,392
OM5R ······· (OM5WW)	519,827
IZ8GUQ	145,580
YT2ISM	63,080
IZ4ORF	60,858
IT9CAR	58,725
IX1 FIT	55,212
MW0KMS	45,552

28 MHz

S50A 390,616
CU4AT
IT9XTP
M5W 211,354
E75M 158,646
IU0DUM 142,397
UF5A 141,484
SQ6H (SQ6PLH)140,844
DO2HQS135,542
IQ4JO122,223

1.8 MHz

SNOR (SQ9IAU) ·······2	7,956
SQ9PPT ·····	936
SP6LUV ······	3,384
LC9X (LA9XGA) ········	2,480
SP7SEW	1,431
DL8AAE ······	1,408
UT4WT ······	1,372
SP2BP ······	1,144
R3LCV ·····	924
YO8RZJ ······	357

LOW POWER

NC8R	153,792
KEOWPA	88,434
W0AAE ·····	72,627
N8AJM	58,660
W5YD (WT5A)	· 34,902
KO4TNK ······	·34,194
W4BB	[.] 28,072
N4NMM ······	·27,810
KE2BVI	-17,385
KD8YVJ	-11,544

7 MHz

ED5R (EA5Z)	690,900
HA4A (HA4FF)·······	129,789
R4SA ·····	51,456
TF2LL	
I5NSR ·····	28,215
LZ2AO ·····	23,002
OK4X	20,514
YO6FNA ·····	11,859
DK9NCX	11,016
ON6IO	

21 MHz

EF3W (EA3CX) ·······	398,880
7S2A (SA2SAA)	255,136
SP8IMG (SP8MG)······	119,970
DO10TW	103,700
EA5EOR ·····	92,842
YL2PJ ·····	76,436
EA5BCQ	71,940
DL3AG ·····	66,250
E74S	53,084
EE1B (EA1Y)	49,680

QRP All Band

LY9A	585,750
ES6RW ······	523,796
LZ5Y (LZ1YE)	498,440
SO2U	287,455
UT4UBZ ·····	204,660
PA3EOU ·····	·····200,880
MI5JYK ·····	172,886
SP9TKW	168,575
HA5BA ······	146,250
OK6K (OK5IM)	141,960

28 MHz

LY5G ·····	73,225
IZ4AIF ·····	59,430
SY1AEA ·····	-51,216
YO8TK ·····	46,350
G4CWH ······	38,448
SQ8MFB	
IT9NAN ·····	30,800
DO1FDK ······	20,650
EC4AA ·····	21,184
LA7WRA ······	16,592

1.8 MHz

HATTI4,500
LY4T2,088
OZ6OM 621
UR5FEO

7 MHz

YT1A	• 617,661
G8X (G4FJK)	353,536
YTOW (YU1JW)	
9A3K	126,140
YT3K	101,926
S570 ·····	96,720
SX5P (SV5FRD)	60,528
OG50 (OG55W)	47,008
OK1DUG ······	41,650
SP3KEY (SP1SR) ····	34,262

21 MHz

IK4LZH 676,939
IT9STX286,740
CT7BJG268,214
SP9XCN254,606
SP7C119,190
EA4UV116,128
OM0A (OM0AAO) 112,896
HB9CIC 94,905
HF7A 94,582
EA7K 93,456

21 MHz

IZ1ANK ······	42,824
CT4QB ·····	31,280
GW4W (GW4EVX)	20,349
IV3LNQ ······	19,312
UT7AA	8,357
I4PZP	14,668
MW8T (MM0CWJ)	9,630
EA7JTP ·····	8,932
SP5SZE ·····	4,340
IW2ODC	2,975

SINGLE OPERATOR ASSISTED HIGH POWER All Band

ED5D (UT5UDX)
ES7A
S53MM 8,235,708
IP3A (IK3QAR) 7,829,856
LY4A7,651,956
IR1G 7,390,090 (IZ1LBG)
HG8R (HA8JV) 7,368,331
RK4FD 6,990,984
S57AL 6,836,094
SO9I (SQ9ORQ) 6,100,872

3.7 MHz

HA1TJ 248,994
S56B178,451
GW9J143,100 (GW0GEI)
9A8M (9A7DM)137,256
MI5K (MI0SLE)121,030
SN9B (SQ9OB)98,112
YU1LD90,968
EA7JZR
DL3LAB32,589
HG8YKO30,160

14 MHz

YU5M	362,043
OK1K (OK1XOE) ···	219,248
SP2RBA	134,196
SP6DVP	104,864
YT7E	90,334
E74TM	85,012
EA1DHB ······	
IZ8EFD	78,430
SQ7OFL	····· 7 0,600
MI0I	66,576

14 MHz

S51Z 70,200
YU1NR 41,612
YO3JOS 21,084
SQ4CTM 18,117
HF5WIM 14,144
SP5ENG
YO4BEX 9,145
IZ50VP 8,906
I3MTM
IS0AGY 3,552

28 MHz ED7W (EB7A) ------1,293,327 TM0T1,069,704 (F4HQZ) SN2M (SP2XF)1,036,070 EE7P ·1,011,402 (EA7ATX) OL9Z 851,368 (OK2PVF) ED2X -844,352 (EA2LMI) DL5L 813,075 (DG00KW) YT1X ··· -789,964

HA5JI778,471
DR1D (DL8UD) 735,080
1.8 MHz
S56X52,824
SP5ELA
SP3GTS
HA8BE 28,670
UR7U (UT6UD)
RM4F 24,637
DF9LJ 19,215

7 MHz

F1DHX 98,468	
HA6NL 91,980	
EE3O (EA3O) 81,320	
SP3AYA 78,470	
HG6K (HA6AK) 63,630	
OM6TX 42,398	
SP7JS 41,735	
E71AGA 39,100	
EW4GL 19,789	
SP9BJV 17,728	

7 MHz

OK6OK 26,151
SN9Y11,718
E74BMN9,359
SN9U (SP9NSA)8,512
ON4ANE6,345
R4ZZ2,146
UT5UUV 255
DL8SYL54
DN1LX15

21 MHz

DF7A (DL2ARD)1,437,260
S50K
UB7K 1,096,560
SN3A
LZ5K (LZ5QZ)799,520
OG6N (OH6NIO) 636,120
OK8NM
PA3EWP538,876
IR3Z (IN3XUG)515,450
EW4M 471,750

LOW POWER All Band

TM3Z (F4DSK)	· 3,297,294
9A6KX	-2,389,327
UZ7M (UT9MZ)	2,344,680
OL9R (OK6RA)	1,863,372
SP7Y	1,726,018
EU2F	1,675,044
OE2S (OE2VEL)	1,584,968
SN7O (SP7IVO)	1,349,640
OK6Y (OK2PTZ)	1,124,040
DL1GME	1,075,647

3.7 MHz

LA2AB (SP2ASJ) ······	67,486
OK2BFN ·····	59,059
SP2N (SQ2HCW) ·····	52,851
YT2SIN ······	47,502
OU8A (5P0O)	38,912
OM5KM	35,904
SQ8NGV	35,217
M1U (M0UTD)	22,168
DJ7GS	…14,148
SP5IVC ·····	12,532

3.7 MHz

OL4W (OK1IF)19,227
PA0AWH4,092
SQ3AH26

14 MHz

HA8A (HA8DZ)	1,239,084
YT3X	1,215,044
F4DVX	1,120,140
S57DX	1,050,920
HG5E (HA1AH) ·······	875,289
SV9FBG ·····	773,325
SP4TKR ·····	758,670
S51YI	745,448
F8DVD ·····	675,924
YL7X (YL2LY)	543,186

28 MHz

LY7Z ·····	422,572
ED7B (EA7ZC)	385,586
IB4X (IZ4ORO)	
\$530	344,144
EA7Z	274,784
HA5PP ·····	246,150
LY2TS ·····	228,137
IU4ICT	219,626
EA3XR ·····	212,205
SQ6ILJ	166,424

1.8 MHz

LC1P (LA1DSA) 2,130
SN6S (SP6ZC)240
Z5OQX16

QRP All Band

7.11. 20110	
OM0RX ·······	1,071,714
ES2MC	629,736
YO8FC ·····	-288,252
SQ5CW	166,668
IZ0FUW/5	127,926
PC2F	122,265
F4JJY ·····	96,664
PE2K ·····	88,935
SP9RQH ·····	75,756
IK1BPL	····· 70,452

28 MHz

DH8BQA143,748	
LY1FW124,062	
Z2KPE 106,821	
SP7M 69,795	
LY2OU 65,230	
UY5LW	
SV1NK 50,414	
9A4W 36,480	
MI1M (MI0LLG) 30,765	
GM4M (GM4UBJ) 24,150	

1.8 MHz

ROOKIE HIGH POWER

HIGH POWER
YT3EWW1,513,515
OH8RX 622,336
DM1KM397,488
OT6P 383,995
DD5VL 215,738
SA6OHM131,124
EA3IND129,208
R2REI 96,278
EA4HLP 92,752
F4IYU 87,984

LOW POWER

HA1BB 635,687
SP3GTP 429,336
YO8OLY 382,136
LY1LB 234,384
S56V (S52KJ) 212,352
OE5EBE206,565
SV8SYK 197,080
DJ4MX 191,216
SP3LM164,436
DM5TM 162,400

21 MHz

MULTI-OP SINGLE-TRANSMITTER HIGH POWER All Band

E7DX16,725,462
IR4X14,325,800
EW5A 13,524,564
9A7A12,080,112
IR6T12,031,110
TM6M11,790,818
SP8R11,786,316
RU1A11,119,275
EI7M10,871,110
RL3A10,777,304

LOW POWER

EA5JEG ······	722,528
IV3JAK ·····	- 551,968
LZ8GT ·····	- 534,520
OT1X (ON4DXL)…	284,091
EA2EWL	277,992
IN3JHZ ·····	222,637
OM1BCO ······	210,559
9A5AFF	190,483
EA2EYF ·····	189,280
F4IVC	188,728

14 MHz	
OE3MDB 5,952	
IU5RFA 1,260	

PA2REH ······

·418

LOW POWER	
All Ban	d
IB9T	- 5,202,527
IO3F	4,420,584
IR9K	-4,152,023
ED70	-3,734,656
LZ8E	2,903,417
E7CW	-2,877,550
LX8M	- 2,768,858
LZ8A	-2,411,136
UZ2M	-2,359,353
E7GZ ·····	1,779,528

CLASSIC HIGH POWER

(OE1ZZZ)	3,239,405
UW1M (UR5MW)	·····2,977,542
S50G (S56M) ····	5,800,025
YT3D	·····2,516,496
9A9R	·····2,249,382
EA5GS ······	1,767,227
ED3C (EA3IBV)	1,740,292
EA3CI ·····	1,661,968
PA4VHF ·····	1,551,840
F5LIW	1,611,460

MULTI-OP TWO-TRANSMITTER All Band CR6K 20,233,136 9A5Y 14,431,279 II2S 14,282,366 ED1R 14,080,080 DP7D 10,132,710 S53M 9,259,232 HG7T 9,003,836

DP7D 10,132,710 S53M 9,259,232 HG7T 9,003,836 II9P 8,836,800 CR6P 7,606,575 DR4A 7,444,500

LOW POWER

LZ6E950,478	
IK1JJM716,398	
DP5P (DL1MHJ) 805,068	
LZ5Y (LZ1YE)	
UA3BL467,152	
R3DCY 446,472	
ED4J (EA4HKF) 562,790	
LA5LJA 442,225	
S57NAW 839,454	
F4WDL 517,040	

3.7 MHz

SQ9SX ------960

MULTI-OP MULTI-TRANSMITTER All Band

9A1A	21,905,062
M6T	20,681,020
YT5A	19,592,916
LZ9W	19,527,782
DF0HQ	18,559,800
OT5A	10,370,900
LN8W	9,445,167
TM1A	5,578,078
M6C	4,324,936
PI4CC	2,902,844

YOUTH HIGH POWER

SO9I (SQ9ORQ)	·6,100,872
YT0C ······	·5,217,096
ES5G (YL3JA) ·····	4,810,428
DL3ON ·····	•4,631,728
DM7XX······	2,610,848
DK6SP ······	/ /
TM5GGU (F4IEY @ F6KGL)	709,136
9A3BWP	366,444
YU7RCI ·····	327,887
DL0MT ·····	322,920

SINGLE-OPERATOR TOP SCORES IN MOST ACTIVE ZONES

Zone 3	
ND7K (W4IX @3,695,843 N6WIN)	
K6XX2,307,770	
WC6H (NU6S) 1,691,872	
K6NA1,275,335	
N6AA800,712	
W7WA638,172	
W7YAQ502,712	
K6NR	
*K6GHA389,480	
N7RQ376,942	

Zone 4	
XL3A (VE3AT) ···	8,629,768
K5TR	5,069,331
W9RE	5,067,940
K4AB ·····	4,810,131
K5GN	4,373,040
N2IC	4,020,450
VE5MX	3,652,110
NA8V	2,828,804
VC3X (VE7VR)···	2,201,256
K8GL	1,285,144

Zone 5		
N5DX10,047,165		
K1LZ 8,459,496		
VY2TT (K6LA) 5,796,648		
K4ZW 5,352,564		
NR3X (N4YDU) 4,871,736		
KQ2M 3,398,374		
*N1UR 3,260,735		
VE9AA2,895,640		
4U1UN 2,062,137 (KO8SCA)		
K3UL 1,787,731		

Zone 14		
EA2W	- 6,784,425	
DD2D (DL7FER)	4,588,450	
*CR2B (EA1BP)	2,572,485	
M5DX (G4FAL)····	1,792,798	
EA5GS	1,767,227	
ED3C (EA3IBV) ···	1,740,292	
EA3CI	1,661,968	
F5LIW ·····	1,611,460	
*DM5EE	1,573,000	
PA4VHF ·····	1,551,840	

Zone 15		
IR2Q (IK2PFL) ······	.7,743,001	
9A1P (9A1UN)	•7,613,112	
OM0R (OM3GI)	.7,442,520	
OM2VL ······	·6,962,058	
IY3A (IZ3EYZ)	6,054,725	
S50G (S56M)	5,800,025	
IR2M (IK4VET)	5,562,655	
ES5G (YL3JA) ······	4,810,428	
IB9A (IT9RBW)	4,310,371	
IO8V (IK0ETA)	3,633,993	

Zone 16	
UW5Y (US2YW) 5,911,182	
UW1M (UR5MW) 2,977,542	
UI5R 1,643,372	
EW2A 1,484,070	
EW111,084,512	
R4GM 958,070	
*ER3CT 528,520	
*UA3BL 467,152	
RD1AH 454,656	
UT6EE 450,072	

*4Z4AK	3,672,027
YP0C (YO3CZW)	3,088,776
TA3DE ·····	2,875,840
*YO4RDW	1,124,991
*LZ6E	950,478
*SV2HJQ	620,160
C4W (5B4WN)	536,922
LZ6V	444,276
*LZ1DM	406,468
TA1CQ ······	390,894

Zone 20

Zone 25	
JH4UYB	
JE6RPM (JH5GHM) 3,800,612	
JF2QNM2,297,952	
JK1YMM (JA8RWU)	
HL2WA1,243,840	
JH7QXJ1,238,511	
JI2KXK	
JG7AMD1,024,632	
JR1IJV 892,160	
JH1HIC	