CW Results of the 2023 CQ World Wide DX Contest

"The CQ WW is the king of all contests; huge participation and great fun." – IZ8GUQ

By John Dorr, K1AR

The CQ WW Never Ceases to Amaze!

o matter how you measure the performance of a contest event, the CQ WW continues to set the standard for all others. As we close the book on the WW's 75th anniversary, record activity was noted with nearly 8,100 logs received (almost 18,000 logs for both modes), representing 4.9 million QSOs or 28 QSOs being made across the world during every second of the contest.

A question that is often asked (more frequently by our friends and family) is, "Why do we do this?" In some ways, staying cooped up in a small room with a headset clamped to our heads for hours at a time is odd behavior at best. We talk to people we can't see and more often don't even know. When we do communicate with others, we do so by exchanging an unusual set of letters and numbers, taking only a few seconds before doing it again with the next stranger that comes our way.

It turns out that Geoff Howard, W0CG (and also owner of the world-renowned PJ2T superstation), has expressed an answer to this question in a way that's better than anything I've ever seen.

The Kediri DX Contest Team who entered the Multi-Explorer category using 4 different locations to put 7E3E on the air!

Why do We Contest?

A Perspective from Geoff, W0CG

"Contesting affords all of us worldwide a 48-hour escape to this fantasyland where politics, economics, misery, injustice, and all other suffering seem briefly distant and abstract. Sport is an escape from the burdens of everyday life. Contesting is our sport. And I'm most grateful for this sport – contesting -- and the friendships and fellowship and escape it brings us. In these brief hours yes, all seems right with the world."

In keeping with Geoff's theme, one area of the contest that I especially enjoy reviewing is the soapbox comments that many of you include with your log entries. Indeed, you are often expressing in your own words the answer to the puzzling question of our enthusiastic participation. You can see them for yourself at: <u>https://cqww.com/soapboxcw.htm?yr=2023</u>. Here's just a small sample of what you'll find:

- "Didn't have the time, but, even 5 minutes of CQWW CW is worth it! Until next year..." EA1PJ
- "Brought the venerable Yaesu FTDX-3000 out of storage for this contest. My new 25-foot vertical with its remote tuner worked FB. Ten meters was FULL of signals!" WA5RR
- "Wow that was fun! After more than a 30 year hiatus, I reactivated my call this year and took part in the CQWW again (last time I participated was back in 1991 under the call Z21HQ)." DF2RQ

With the introductions complete, let's get on to reporting the results of the 2023 CQ WW CW contest.

Another Year of Incredible CQ WW Contest Operating!

ven with the sun acting up during part of the weekend, the 2023 CQ WW contest was nothing short of spectacular! When you measure success by band activity, there's little to debate as stations could be found calling CQ on frequencies such as 14115 or 21120. Bandscope displays from around the world were simply jammed with signals from one end of the band to the other.

In the highly competitive World Single Operator battle, there was yet again no surprise as Dan Craig, N6MJ, blew away the field with a record-setting 20.1 million point performance from ZF1A. As Dan "casually" logged over 11,800 stations, he easily beat his WRTC partner, Chris Hurlbut, KL9A, who rang up 15.6 million from TI7W. It's especially notable that each of these scores was achieved from "2-point" countries, making the results even more remarkable.

The U.S. Single Operator race also resulted in a dominant victory as N5DX, operating from the N2QV superstation, racked up an amazing 11.4 million points, as well as logging just short of 6,000 QSOs! Perhaps

you recall the days when 1,000 QSOs would take the USA prize. Dave McCarty, K5GN, showed us that hard work in assembling a world-class station can pay off as he delivered a #2 USA result of 7.5 million points from Texas – no easy feat in the typically East Coast-dominated competitive landscape.

The World Single Operator, Low Power category was a much closer affair as Dimitri, RA3CO, won the prize with a 14.3 million point result from PZ5CO, narrowly beating out Bud, AA3B, who posted 13.9 million points from his V26K station in Antigua paradise. You should take notice that Dimitri's score would have been #4 World amongst the high-power group!

Doug Zwiebel, KR2Q, led the world again with an amazing 1.7 million point win in the challenging Single Operator QRP group, logging 1300+ QSOs over the weekend. The improved conditions may indeed be a QRPers best friend.

There was some good, old-fashioned stiff competition within the Single Operator Assisted cluster (pun intended). In the end, Jack, R2AA, operating as P3AA, took first-place with an impressive score of 14.6 million – a new World record. There continues to be an opportunity for someone in the future to deliver a world-high single operator score while using assistance, but the unassisted group is doing their best to ensure that never happens! Randy, K5ZD, took the top USA position and was third overall with 12.1 million.

And, for the majority of us who find working 100 countries on any band to be a worthy accomplishment, it should be pointed out that Dave, K1ZZ, managed to do it on five bands (80-10 meters)!

Single-band efforts also impressed as Marko, N5ZO, traveled to Uruguay and demonstrated operating at its finest with a 2.2 million point effort on 10 meters. Perhaps even more impressive, however, was the world high result by "youngster" Jim Neiger, N6TJ, who took home the mono-15 prize by racking up over 900K points from KH7M, a difficult QTH that is essentially not located near anything!

With the COVID pandemic firmly in the past for most of us, the multi-ops were out in force for the 2023 CQ WW CW contest. The team from P33W did it again for Multi-Single High Power, delivering 23.4 million points, easily besting a solid 18.7 million point effort from the UP2L group. The Low Power Multi-Single gang was led by P40L at 16.7 million points. But, as they say, there is more! The CR3A crew showed the world how it's done in the Multi-2 category with an amazing score of 41.7 million points.

However, the winner of the multi operator giants goes to the D4C Multi-Multi team, delivering a remarkable 56.2 million point effort, logging over 20,100 QSOs or seven contacts for each minute of the contest! Equally worthy of mention was the heated Multi-Multi USA battle between KC1XX, K1LZ, and K3LR. In the end, the XX team won the plaque at 28.1 million points with the scoring separation between each of these three titans being only 4%.

As has been the case for several years, the overlay categories continue to demonstrate great interest amongst WW participants. Bob Shohet, KQ2M, narrowly won the World Single Operator Classic prize at 4.2M (reminder, that's achieved in only 24-hours of operating), while Janko, YT3EWW, continued to dominate the Rookies (his time is now up!) with 1.7 million points. Perhaps of greatest note is the 6.4 million point effort by Alek, RA9P, in the Youth group. Every time I hear Alek operating, he is bursting with enthusiasm and energy and will be a force in contesting for many years to come. Lastly, a round of applause is in order for this year's contest club winners – Frankford Radio Club (USA) and the Bavarian Contest Club (DX), who yet again dominated the club listings. However, keep an eye on the group from the Italian Contest Club. Fresh off the last WRTC event, there is enormous enthusiasm for contesting in Italy, a potential sign of things to come in the competitive world of club entries.

The bottom line, however, is that everyone is a winner in the CQ WW. Your participation, large or small, is what makes this contest the biggest and best. Congratulations to all!

Enthusiasm flows as a result of the effort by Don Jones, 7Q6M, introducing several Malawian youngsters to amateur radio and contesting (I-r) Urgent Jere and Abraham Moyo. Don will be forming a youth team for the upcoming Region 1 Youngsters on the Air (YOTA) Camp in August 2024.

How Much Time Do You Operate in the CQ WW?

e all have different circumstances that determine the amount of time we can devote to a given contest, including the CQ WW. For U.S. hams, the decision-making process is even more complicated as the CW contest regularly falls on Thanksgiving weekend. Aside from the usual trade-offs of family time, work commitments and other factors, is the reality that none of us is getting any younger. I can speak personally about the reality that operating a full 48-hours is nothing more than a distant memory!

The sweet spot for the 2023 CW WW operating time turned out to be a median value of 12.8 hours, slightly higher than previous years, perhaps reflecting the continued improvement in conditions (See Table 1). I stand in amazement, however, of the elite group that operated 45+ hours, several of which claimed to be in the chair for the full duration of the contest. Someday, you'll have to explain to the rest of us how you do that!

Total Operating Hours (SOAB only)									
operating hours	AF	AS	EU	NA	0C	SA	ALL	% of all	Cum %
5.1-10	5	136	518	398	25 19	26	1,101	21.7%	39.3%
10.1-15	1	136	450	290	20	19	916	18.1%	57.3%
15.1-20	5	105	342	236	11	19	718	14.2%	71.5%
20.1-25	2	67	281	177	8	6	541	10.7%	82.1%
25.1-30		50	164	141	10	7	372	7.3%	89.5%
30.1-35		37	97	70	2	8	214	4.2%	93.7%
35.1-40	1	25	76	53	4	2	161	3.2%	96.8%
40.1-45	3	13	58	39	2	7	122	2.4%	99.3%
45.1-48	2	7	16	11	2		38	0.7%	100.0%
ALL	23	733	2,375	1,727	103	113	5,074	100.0%	

Table 1 – Operating Time by Continent in the 2023 CQ WW CW Contest

The Elite of Accurate Contesting

The majority of logs we received this year were reasonably accurate with a median error rate of 2.9% (of course final scores were reduced further due to loss of multipliers and penalties as defined in the rules). Further, given the high percentage of WW participants actually submitting their logs, we are able to successfully crosscheck the vast majority of the QSOs made in the contest. Put another way, it's quite an accomplishment to make the list as shown in Table 2. Congratulations to each of you for a fine showing of accurate logging!

Log Accuracy Data by Top CQ WW Operators						
	Call	Cont	Power	Raw Qsos	% accuracy	
	E72U	EU	HIGH	1,398	99.64	
	KR2Q	NA	QRP	1,306	99.54	
	WQ5L	NA	HIGH	1,305	99.54	
	SK6KU	EU	HIGH	1,300	99.54	
	OK1OA	EU	HIGH	1,416	99.51	
	HB9HDC	EU	LOW	1,181	99.49	
	SP1AEN	EU	LOW	1,092	99.45	
	KQ4R	NA	HIGH	1,383	99.42	
	LN7TTT (LA5LJA)	EU	LOW	1,026	99.41	
	EU4E	EU	HIGH	2,885	99.41	
	LY9A	EU	QRP	1,819	99.39	
	WW4XX (LZ4AX)	NA	LOW	1,916	99.37	
	K6NA	NA	HIGH	1,992	99.35	
	YL2PJ	EU	LOW	1,014	99.31	
	N5AW	NA	HIGH	1,572	99.30	
	DK3YD	EU	LOW	1,281	99.30	
	VE3TM	NA	LOW	1,084	99.26	
	JE4MHL	AS	LOW	1,034	99.22	
	HB9ARF	EU	LOW	1,849	99.19	
	K6NR	NA	HIGH	1,205	99.17	
	OR2F	EU	LOW	2,509	99.16	
	YL2VW	EU	HIGH	2,243	99.15	
	W7YAQ	NA	HIGH	1,169	99.14	
	JI1RXQ	AS	LOW	1,735	99.13	
	V26K (AA3B)	NA	LOW	9,067	99.12	
	K8GL	NA	HIGH	2,027	99.11	
	9A2AJ	EU	LOW	1,064	99.06	
	DL8ULF	EU	LOW	1,256	99.05	
	ZS4TX	AF	LOW	1,447	99.03	
	DL1USB	EU	LOW	1,020	99.02	
	ZD7BG	AF	HIGH	1,019	99.02	
	КЗТС	NA	HIGH	1,119	99.02	
	ROWC	AS	HIGH	1,104	99.00	

Table 2 - Single-Op Accuracy Champions (>1000 QSOs) for the 2023 CQ WW CW Contest

Youthful Contesting in the CQ WW

While not an overwhelming number of entries this year, we did experience impressive global participation by the under-25 crowd in the 2023 CQ WW CW Contest – 20 countries in total (See Table 3). Let's continue to invest in this important group of operators and watch it grow in the coming years!

	Youth Entri	ies in 2023 CQ	WW CW Conte	st	
Entity 9A	AS	EU 4	NA	SA	ALL 4
9V	1				1
BY	5				5
DL		3			3
E7		2			2
EI		1			1
F		1			1
G		1			1
L		2			2
JA	2				2
К			7		7
S5		1			1
SM		1			1
SP		2			2
UA		2			2
UA9	1				1
VE			1		1
YO		7			7
ΥT		1			1
ZP				1	1
ALL	9	28	8	1	46

Table 3 – Total Number of Youth Entries Received by Continent in 2023 CQ WW CW Contest

Yes, this is an amateur radio station! A stunning view of Tim Duffy, K3LR's, antennas while "under the FAA lights" in West Middlesex, PA.

Let's Talk about Rate!

The hourly rates of top scorers in the WW continue to grow. With the advent of two radio operating techniques, it's now possible, for example, for single operators to log over 400 QSOs in one hour (See Table 4). Like many of you, I vividly recall when the benchmark used to be only 100 contacts. Did you forget we are talking about CW?

Of course, with high rates comes the need to also pay attention to accuracy. It's notable that most of the high-rate operators also submit extremely clean logs – a true testament to their outstanding operating skills.

If you want more data, an even more extensive analysis of rates can be found at <u>https://cqww.com/rates/.</u>

Nate Moreschi, N4YDU, training up the next generation of contesters as the adorable 3-year-old, Mila, gives the bands a try!

CALL	Cat	QRATE	Ор	CALL	Cat	QRATE	Ор	CALL	Cat	QRATE	Ор
ZF1A	SOAB(U) HIGH	425	N6MJ	V26K	SOAB(U) LOW	327	AA3B	XE2S	SOAB(A) QRP	125	
TI7W	SOAB(U) HIGH	408	KL9A	PZ5CO	SOAB(U) LOW	327	RA3CO	LY9A	SOAB(U) QRP	94	
V47T	SOAB(U) HIGH	353	N2NT	EA2W	SOAB(U) LOW	213		N3CZ	SOAB(U) QRP	92	
CR6K	SOAB(U) HIGH	345	CT1ILT	3V8SS	SOAB(U) LOW	202	KF5EYY	EA2ESB	SOAB(A) QRP	90	
FARRM	SOAB(U) HIGH	314		4X7M	SOAB(U) LOW	188	4Z4AK	UZ5DM	SOAB(U) QRP	86	
8D5A	SOAB(U) HIGH	303	W2SC	UW5Y	SOAB(A) LOW	184	US2YW	ES2MC	SOAB(A) QRP	86	
ELET	SOAB(U) HIGH	296	FA3M	PJ7EE	SOAB(A) LOW	182	KC9EE	OM0RX	SOAB(A) QRP	84	
EFOI		293		K1BX	SOAB(U) LOW	182		OA4ASD	SOAB(A) QRP	84	
107A		200		TF/OU2I	SOAB(U) LOW	176	OZ2I	OK6K	SOAB(A) QRP	82	OK5IM
P3AA	SUAD(A) HIGH	292	KZAA	EA5M	SOAB(A) LOW	172		KR2Q	SOAB(U) QRP	78	
LZ5R	SOAB(U) HIGH	286	LZ5DB								

Top QSO Rates (best 60-minute rate)

What's your Power?

The choice of a power category in the WW is usually determined by a combination of available equipment, personal goals or competing stations. Entering the low power category has proven to be the most popular operating class with over half of all single-op logs using less than 100 watts (See Table 5). It was also interesting to note that only North America has more entrants in the high power category when compared to low power entries.

I can't leave this topic without mentioning one other issue – abuse of power. Although unproven, it is well known that there are a disturbing number of stations running power over the 1500-watt limit as clearly defined in the rules. The same is true for some stations claiming low power, where amplifiers are either being used over the entire weekend or selectively in difficult pile-ups. At some point, we will take some form of action against these infractions. For now, you've been warned!

Continental Breakdown Entries by Power Levels

Power Cat	AF	AS	EU	NA	OC	SA	ALL	% of all
SOAB HIGH	10	260	774	892	39	30	2,005	39.5%
SOAB LOW	11	440	1,466	771	59	78	2,825	55.7%
SOAB QRP	2	33	135	64	5	5	244	4.8%
SOAB totals	23	733	2,375	1,727	103	113	5,074	

Table 5 - Breakdown of Power Categories by Continent for the 2023 CQ WW CW Contest

A Few Final Anecdotes

One of the perks of being the CQ WW Director is that I receive a wide range of interesting stories and exciting anecdotes in my email inbox! Here are a few examples just to give you an idea – enjoy and remember!

PP5JR and His Family of Hams

This brief story is an inside view to some of the aspects of contesting that never make the scoring tables. Such is the case with Sergio, PP5JR. As is often the case, successfully delivering packages to international destinations through the global postal system can be difficult. This particular issue was amplified to even greater levels during the COVID pandemic. Much to Sergio's delight, his 2021 and 2022 CQWW plaques were hand-delivered by Oliver, W6NV, while preparing to operate in the WW CW Contest. The local ceremony turned out to be a household affair as Sergio's plaques were "formally" awarded at his home surrounded by his ham family – an event that he will always cherish.

The hams of Brazil are proud to note that for the last four years, Sergio, PP5JR, has been the world high

scorer for the CQ WW SSB Single Op/All Band Assisted category. From his well-built contest station, Sergio has also hosted many winning single and multi-band events with calls including ZX5J, PT5A, and PT5J. A particular highlight for Sergio was being the co-director of WRTC 2006 that took place in Florianopolis, Brazil.

Congratulations, Sergio, on your winning achievements and contributions to our radiosport!

Sergio holding his well-deserved CQ WW plaques for 2021 and 2022 with his family of amateur radio enthusiasts (I-r) Eduardo, PU5FJR: Leonardo, PU5BOB; Beatriz, PU5BIA; Sergio, PP5JR; Fernanda, PU5FDA; and Juliana, PU5JDA (thanks to Oliver, W6NV).

Remembering Marco, CE1EW, by Dercel Williams, XQ3SK

A group of Chilean contesters set out to organize a tribute in recognition of the sudden passing of a great Chilean radio amateur, Marco, CE1EW. His contributions to radio, active participation in DX-peditions, PoTA and SOTA trips, and contest competitions have been a source of admiration and motivation for many radio amateurs in Chile and the world. In coordination with the Secretary of Telecommunications of Chile we were able to obtain approval to participate in the CQ WW CW 2023 with special callsigns (3G, XR, CB) that end with the suffix "EW" (the letters used by our friend Marco, CE1EW. There were a number of Chilean stations activated as a tribute to Marco including: 3G8EW (XQ3SK), XR1EW (XQ1KZ), XR8EW (XQ3SK), CB2EW (CE2GT), CB4EW (CE4WT), 3G4EW (XQ4CW), 3G6EW (XQ3OP), 3G7EW (CE3HDI), CB6EW (XQ3OP), 3G3EW (XQ3WD), CB3EW (XQ3WD), and CB1EW. Let's be sure to remember our friend and his many contributions to our sport.

First Class Video from Team D4C

Have you ever wondered how an experienced contest team can work over 20,000 QSOs in one CQ WW CW weekend? Think about that number for a minute; that's 420 QSOs/hour in all 48 hours of the contest! Or, looking at it another way, the team individually worked over 4300 QSOs on 20-15-10 meters. If you'd like to see more, I encourage you to check out their outstanding video production here: <u>https://www.youtube.com/watch?v=2g_N6GM0QnE</u>

Youthful Experiences in the CQ WW by Sam Mauldin, WO5T

My plans to operate the CQWW CW contest first started while I was with my grandfather, Mike, K5NU. I had just received my license and was visiting to borrow one of his HF radios, all in anticipation of operating in the CQ WW. As I visited, we tuned around the bands, listening together. My grandfather pointed out stations calling CQ and where they were located. I was amazed at how much we were able to hear and I knew at that point I had to try it for myself.

As time progressed, I practiced my CW skills, making steady progress along the way. In December 2022, I completed my first Parks on the Air activation on CW. The following month, I participated in my first contest! Before I knew it, November 2023 had rolled around and it was time, at the ripe old age of 22, for my first CQWW CW.

Sam, WO5T, hard at work operating from George Freeman, K5TR's fine station.

Early Friday afternoon of the WW contest weekend, I arrived at San Angelo State Park, my QTH for this contest. The clock was ticking towards midnight UTC, so I quickly got to work setting up my station. I strung up the wires and radials for my vertical, ran coax, and plugged in my radio. I discovered that I had forgotten the cable I needed for CAT control, so I would have to make do without it, but otherwise the station was working as planned. It wasn't long before the bands sprung to life, and it was time to operate. My main goals were to learn what this contest was like and get some experience trying to run. I discovered that running was still possible from Texas with low power and no directional antennas, but finding the right propagation that allowed for it was very important.

This first CQWW CW was a great weekend on the radio for me. I enjoyed working stations up until the last minute when the bands suddenly became quiet and the wait for the next contest began. It's safe to say that I'm hooked and am already thinking about how I can improve my score for next year. Maybe we'll work each other in the next one!

Exploring in the CQ WW

The response to our recently new Explorer category continues to be tremendous. It's been exciting to witness some of your creativity in pressing the limits of technology in contesting. The following comments are representative of what's happening in this slice of the contest scene.

Maltese Exploring from 9H6A

For many years, it has been the practice of our team to enter as a multi-operator group for CQ's contests, with entries either in the Multi-Single or Multi-2 categories. We have often been joined by visiting hams from several countries, like Greece, Italy, Netherlands, USA, Russia, Croatia, and others. Operators who came to our little shack were a real boost to our enthusiasm, even if we didn't expect to rank in the higher places of the results.

The 9H6A shack is actually a small room, about 9-ft by 14-ft, which houses all the rigs and amplifiers. The antennas include monobanders for 10-20 meters as well as a 2-el 40m Yagi at about 16m above ground level (AGL). We also have a 74' vertical with four wires making a capacitance hat assembly, which we tune for 160 and 80 meters. This vertical has 32 radials, spread around it at the base ranging from 30-130 feet in length.

With the advent of the Covid-19 pandemic in previous years, it was obvious that we could not accommodate multi-operator contests in the shack and still conform with the local regulations regarding the meeting of groups. The safety of the team members was even of greater concern. Apart from the regulations, everyone was apprehensive to risk the viral infection. We were simply scared.

The initial introduction of the distributed category in the WPX contest was, as we saw it, a solution to our problem. The idea was for operators to work from home, provided we could find a way to communicate between each participant the data necessary to network our computers reliably and smoothly while preserving the required isolation of each of the team members.

We set out to find a dependable setup. Use of N1MM+ suggested using port forwarding at all the localities involved. We spent a lot of time experimenting with this option. This involved a relatively complex setup and I am sure it would have worked if we continued trying it. However, some of our operators had dynamic IPs, often changing several times during one day of operation. Given the likelihood of changing IP addresses, the port forwarding setting on each computer would repeatedly need to be adjusted. So, on to plan B.

Again, from the N1MM+ manual we adopted the idea of using a VPN. None of us had much experience with this, but luckily there was a very ample explanation in the help pages that facilitated a workable solution. This worked smoothly and we were able to run the WPX contests using the VPN system. The drawback of this software was that you could only run five computers. However, for the WW SSB contest, we had many more interested hams both locally as well as two visitors. Further there was no similar distributed category. Therefore, we moved onto plan C.

The research began for a VPN software solution which was reliable, robust, free, and could support more stations. Several hours of testing quite a few systems yielded one which satisfied these conditions.

By this time, the recommendations concerning in-person group size numbers were relaxed and we could have three operators in the main shack while others could work from their own shack. So, the model was set. The CQ WW Explorer category was the perfect and only category for us and thus the choice which justified all of the technology research, testing, and pain. We look forward to exploring with you next year!

Exploring from Swains

Many of you worked K8R in the 2023 CQ WW CW Contest. Those QSOs seemed perfectly normal by contesting standards. However, the set-up was far from ordinary. Entering the multi-op Explorer category, K8R was operating from Swains Island (KH8S) using newly designed rig-in-a box (RIB)-based equipment (check out K3LR's interview with RIB designed AA7JV at https:// www.youtube.com/watch?v=1XqBhp7M2Uk for more information). While the radio (RIB), generators and antenna were all located on the island, the radio was connected to the team's nearby boat via a 900 MHz IP link. This off-shore location was where the control systems, logging software and computers running Smart SDR were located. Amazingly, the operators were actually located in Europe and were linked to the boat via the Internet and Starlink. We were proudly exploiting the Explorer concept and look forward to the next opportunity!

This station design is an example of the future of contesting for some, as operators, both locally and remotely, can experience the thrill of being DX as demonstrated by the K8R operation from Swains Island.

The Remote Base Contest Club – WX8S (Ryan, KL8X Operator)

Over time I have been evolving a remote base setup for contest and group use. The system revolves around the use of Microbit Remote Rig interface units, which uses the Internet as a virtual "cable separation kit" from control head to transceiver. My Icom IC-7100 is the perfect radio for this application as it is a compact unit designed for separated use with the control head, while being conveniently located at the operating position and the transceiver remotely mounted. The entire setup is professionally packaged in a 3U rack mount case with custom front and back panels to allow easy connection and setup. The remote unit can connect to the Internet via Ethernet or WiFi. This system allows operation from wherever a stable internet connection is available, even via a mobile phone hot spot. In the end, it has proven to be a perfect solution for the CQ WW Explorer category.

This project has been a two-year evolution of experimenting, refining, tweaking, and proving robustness. My longer-term goal is to potentially have the remote base unit located in Alaska for use during contest so I can operate with my KL8X call, no matter where I may be physically located and even allow other people to use it. There will surely be more exploring in my future!

Without Further Ado...

Finally, I am given the opportunity to thank the real heroes of the CQ WW – our esteemed committee members. This group of dedicated contesters are the engine behind the best contest in the world! Let's acknowledge their contributions together as follows: Bud Trench, AA3B; CT1BOH, José Nunes; EA4KD, Pedro Vadillo; ES5TV, Tonno Vahk; F6BEE, Jacques Saget; G0MTN, Lee Volante; IK2QEI, Stefano Brioschi; JH5GHM, Katsuhiro (Don) Kondou; K1DG, Doug Grant; K1EA, Ken Wolff; K3LR, Tim Duffy; K3WW, Charles Fulp; K5ZD, Randy Thompson; KR2Q, Doug Zwiebel; LA6VQ, Frode Igland; N9RV, Pat Barkey; OH6LI, Jukka Klemola; PA3AAV, Gert Meinen; RA3AUU, Igor (Harry) Booklan; S50A, Tine Brajnik; S50XX, Kristjan Kodermac; UA9CDC, Igor Sokolov; VE3EJ, John Sluymer; VK2IA, Bernd Laenger; YO3JR, Andrei (Andy) Ruse.

Depending on the day you are reading these words, the 2024 edition of the CQ WW CW contest is no more than 227 days away! This year's contest promises to be an epic event as solar conditions approach their peak. Until then, keep working on those antennas and stations. They're going to be put to work in November!

73, John, K1AR

WORLD SINGLE OPERATOR **HIGH POWERAll Band**

ZF1A (N6MJ) 20,188,620
TI7W (KL9A)15,681,170
CR6K (CT1ILT)14,345,736
V47T (N2NT)13,883,553
8P5A (W2SC)13,348,944
EA8RM
N5DX (@N2QV)11,479,530
VY2TT (K6LA) 9,258,540
EF6T (EA3M)
P3D (VE3DZ) 8,355,141

7 MHz

КР4АА	
OM2XW	647,168
YT7A (YU7GM)······	624,666
IB8A (IZ8JFL)	541,688
VK6T (VK6LW)	537,788
5Z4VJ	500,464
K90M	338,892
IR2R (IZ2EWR)	324,951
HA2KMR ······	310,250
WF2W	278,256

28	M	Hz	

NP3A	990,360
PR2E (PY2WH)	686,622
VR2T (VR2ZQZ)·······	452,210
LU4HK·····	324,710
WB4TDH ·····	
W0UO	303,242
GW4J (GW0ETF)······	297,434
JA6WFM ······	294,872
DL4AAE ·····	268,348
IH6WHN ······	259.482

21 MHz

SP5ELA

SM6CPY ······

EA4IE

28 MHz

CW5W (N5ZO) ------2,230,970

PX2W (PY2YU)1,639,291

KP2B (WP3A) ------1,146,830

OA4EA (EA7TN)1,048,477

K1TO-----884,642

EF8BBM (EA4BQ) ------ 882,880

9N7AA (S53R) ------ 787,339

7Q6M (K6ZO) ------ 721,990

JS6TSE ------ 714,381

3.5 MHz

UT5EL-----202.188

W3BGN 187,936

HA4A (HA4FF)------110,700

LW1F (LU5FC)	569,468
EF3W (EA3CX)	562,400
FR8UA	556,542
S50A	531,960
J35X	485,504
YT9W	339,85
JR3EOI ······	319,85
7K4XNN·····	211,008
LY5I	187,27
JA1GQC ······	138,840

1.8 MHz

SM6CNN ·····	29,510
YO8DHA	29,450
OK1MNW	28,980
OE6JTD ·····	13,568
LC9X (LA9XGA) ·······	13,250
SP2HMT ·····	
S59DR ·····	
UT4WT	4,641
I3PXN	
I1MMN	

..... 128,040

·83,061

.78,806

4L50232,716
K5RX168,674
LX1NO134,112
S530
VE3ZI49,335
VE3PN24,700
SP6AEG
N4XD16,380
OE3SGU13,393
K5UR12,760

......88,140

---- 386,739

14 MHz

DL9ZP ------176,343 I1XSG------111,864 NP4L------96,702

CO8RH ------84,780

OM0MW-----71,173 M2U (M0DHP) ----- 63,712

QRP

All Band

N3CZ-----

KR2Q ------1,757,640

LY9A ------1,112,342 W1FI -----572,480 JH10GC-----545,703 W6JTI ------ 530,848 HG6C (HA6IAM) ------ 518,093 K8MR ------ 485,072 JR4DAH 472,610

S52GO

IK4MTF ······

1.8 MHz

LOW POWER All Band

7 til Bollio	
PZ5CO (RA3CO @PZ5RA) ······	14,328,600
V26K (AA3B)	13,884,801
3V8SS (KF5EYY)	
4X7M (4Z4AK)	6,218,274
EA2W	5,763,060
IY3A (IZ3EYZ)	·······5,050,032
ZL7IO (ZL3IO)	4,520,310
4L9M	4,293,792
N1UR	4,055,296
LY4L	

7 MHz

4L2M	341,373
YU7WW······	309,639
YU1RA ······	248,311
CO2JD	216,019
E7AA (E70Y)	213,858
OM3ZWA ······	158,508
OK2HBR	109,242
IV3EAD	103,428
OH9SE (OH9HDH)····	101,834
YO5ODT	88,712

28 MHz

BV3FG110,192
W5GAI
LY5G79,326
4F3OM62,846
US5VX61,992
KV8Q50,130
OK1LV46,545
CO6EC43,840
4L5P36,515
EA8AQM

OL5J	113,119
DL6KWN ······	······ 96,05′
CS2C (OK1RF)·······	······82,87′
Z33F	60,368
OK1AGE ······	
RO5X	42,350
S57X	40,515
HB9CPS	
LY7X (LY3DA)	

3.5 MHz

CNN29,510	
DHA29,450	
MNW28,980	
JTD13,568	
((LA9XGA)13,250	
HMT 8,477	
DR4,864	
WT4,641	
N4,408	
2.000	

JA5DQH ······	740,072
XR1EW (XQ1KZ)	730,800
OK6W (OK1MU)	659,880
WP4WW (KP4JRS)	626,535
SN5X (SP5GRM)	583,968
W6YA	577,456
W7WA	566,865
S50R	553,152
F6ARC	550,853

21 MHz

KH7M (N6TJ) ------915,090

14 MHz

OH8X (OH6UM)1,021,372	
8P9A (GU4YOX) 895,083	
DM0A (DK3DM)817,028	
JOVNR608,652	
N8OO	
OM5R (OM5WW)564,045	
YT7B455,007	
A7FTR 413,618	
R2SCJ402,116	

21 MHz

JQ1NGT81,189
HA3JB 75,388
LZ2RS70,900
NA1ME 67,362
DL2TM 47,610
JR1NKN 47,124
EA1BP 45,375
JR2EKD 37,730
HF5WIM 29,360
UT5EOX 27,470

1.8 MHz

S51Z 9,065
LY4T7,220
OZ6OM 4,074
HA1TI
SP8D 1,830

14 MHz

YT3X	···· 973,440
9A5Y (9A7DX)	920,368
HA8A (HA8DZ)	884,439
HG0Y (HA7GN) ·······	857,172
SQ2A (SQ9UM)·······	853,332
K8CX	···· 690,432
OH8L (OH8LQ)	689,751
HG5E (HA1AH)	666,750
UK9AA ·····	623,267
SP4TKR ······	613,409

LOW POWER All Band

KI1G	
UN4Q4,872,202	
UW5Y (US2YW)4,548,128	
AB2E/VP9 (AB2E)4,283,316	
EA5M4,082,210	
SN7O (SP7IVO)3,883,319	
A71WW3,821,397	
LZ8E (LZ2BE)3,744,612	
DJ5MO3,717,000	
DK3WW3,486,102	

14 MHz

YU1RK 66,708
SP1C 63,963
DL3NAA 58,240
UN7EG 25,140
EA3QC 19,152
OK1DSA 15,921
SP2HMY15,680
IU1HCC 11,773
EA3BES 11,183
YO4BEX

SINGLE OPERATOR ASSISTED HIGH POWER All Band

P3AA (R2AA) 14,642,920
TO7A (UT5UGR) 13,866,930
K5ZD
ED8M (EA8DIG) 11,992,734
P44W (W2GD)11,680,160
NP4Z10,282,446
ZF5T (ZF9CW)10,053,890
K1ZZ 9,951,253
ER1KAA (UT5UDX)8,856,576
N2IC 8,378,024

7 MHz

9A5DX	····· 923,468
YT1A	····· 753,280
4Z5LA	······ 752,812
KA1IS ······	····· 748,960
MW5B (G3WVG)	521,520
\$53X	····· 493,317
G8X (G4FJK)	478,009
DE5TXF (G3TXF) ······	450,576
HA7A	377,784
K7NJ	356,001

28 MHz

ГО1А (F5HRY)́	1,240,758
PY2UD (PY1NX)	1,149,050
PY2EX	- 851,304
АН6КО	- 605,696
HA5PP ·····	- 502,740
EA1R	- 466,343
A7W	446,160
_Y7Z	-438,429
N4AO (WC4E)	427,197
PY2RSA ·····	. 426,496

OK6OK	-55,800
SP5CTY ······	·34,710
UT7AA	·32,604
F5MOG ······	31,200
N5ER	29,260
M3F	15,060
MOIDL	15,036
OK6N (OK2PTS) ······	11,100
VE3CW ······	·10,720
ON4ANE ·····	8,946

7 MHz

28 MHz

LU8DPM (LW8DQ)1,424,436
PW2E (PY2ZEA)1,282,420
4X1MM1,003,914
HA5JI 927,654
XE2X
KV2K (K2NG) 826,794
9A5D (9A5DU)
F5MUX 814,271
VR2XAN 774,380
LX7I (DK9IP) 745,714

E77Y 71,586
SP8OOE19,703
YO4BEW19,581
EA2AFV
UT5UUV8,640
YO8RIX 5,781
HB9FSV4,477
DL6NBC
OK6D (OK2TEO)1,026
JH1APZ 810

3.5 MHz

21 MHz

FY5KE (F6FVY)	2,313,096
PT5J (W6NV)	1,628,883
OM8CW	967,155
SN3A (SQ2GXO) ·······	942,354
SN2M (SP2XF)	941,692
S50K	
YT9A	
UP0L (UN9LW)	
S57Z	787,119
OG6N (OH6NIO)	777,018

3.5 MHz

HA1TJ ·····	367,026
PA1CC ······	363,285
SP2PIK (SP2MKI) ·······	
YL9W (YL3DW)	344,421
R8TT	- 340,487
M4T (M0BEW)	336,480
DJOMDR	··267,589
OL7D (OK1DG)	-227,540
S54A	210,808
DL4UNY ······	197,000

21 MHz

FG/OK6RA (OK6RA)1	,241,520
HK3TU	666,406
TA3D ······	474,120
HA6FQ ·····	·360,882
ED70	·359,936
ON6NL ·····	·358,680
K4OAQ	·354,508
K3ZU·····	·340,956
HA8RD	·294,196
WA1FCN ······	280,000

1.8 MHz

LYOUKR (LY7M)111	,996
YL3FT102	,723
9A2KD 99	,372
OT1A (ON4CCP) 71	,995
8S0DX (SM0DSG) 66	,830
DL6MHW 65	,511
SP9JZU 61	,908
OK1CF 60	,588
HA8BE 58	,158
SP3HLM52	,338

14 MHz

7 MHz

HA7I (HA7JTR) 437,875
IZ5ICH252,813
HA6NL251,958
Z32TO 229,886
YT2B ······199,512
YU1LA 178,029
DF4ZL158,596
SV1BJW
OM5ALL146,400
UT9FJ 142,140

28 MHz

LT7D (LU7DZ)146,960
K3TW107,874
3G3EW (XQ3WD)96,831
JA6VZB79,968
JK7DWD65,511
UX9Q (UR9QQ)52,400
M3E (G4CWH)35,616
SP5PDA33,820
EA4HWT28,413
W3EK21,600

21 MHz	
HG1S (HA1DAE)283,	840
LY2OU 109,	671
N6MZ 96,	656
UA4FCO 94,	829
HG3C (HA3HX)74,	366
SP2QOT 68,	591
4Z4UO35,	624
OH1Z (OH1LEG)35,	056
JR1LLD13,	593
NK5G12,	864

3.5 MHz

YO5AVN ------142,738

OE8TED140,450

M3A (M0UKR) ------129,471

DF1MM------124,280

9A2X-----123,265

OK1AY-----101,952

OM5KM ------ 85,595

1.8 MHz

SNOR (SQ9IAU)53,947
S57AW
HA8BT26,656
IT9ZZO25,012
SP7AS15,950
RA3RA12,936
SV2DSJ6,912
UA3YCX3,230
OL6B (OK6AB)3,220
R4DI1,102

14 MHz

FY5FY 891,112
LY1FW 159,711
RT4W 53,128
DL1FY 46,041
LY4BF 34,686
RT1L 29,440
DL1DXA27,632
LZ1AQ23,177
YO3BL20,619
LC2W (LB6RH) 16,146

HA5BA 488,565

HA4FY
DK1VD 63,630
EA3QP 47,310
IO5K (IK5TBK) 37,884
DJ2RG 36,498
J42T (OK1CDJ) 35,364
OK1FKD34,496
EA2BO 33,000
IW3ILM31,990
YU9YAU29,039

3.5 MHz

OL4W (OK1IF)
YU1LD 36,876
UT4UBZ14,820
DL5SFC6,270
SQ9MR5,508
UW1U (UT7UA) 4,716
SP3MKS 4,300
VA3OGG128
JH3DMQ72

MULTI-OP TWO-TRANSMITTER All Band

CR3A41,709,024
PJ4K33,575,256
W3LPL21,730,149
OM7M 18,227,808
PX2A17,616,530
HQ9X16,526,206
ED1R16,119,943
VA2WA15,661,737
RT4F15,010,490
OL3Z14,538,649

1.8 MHz

OL1A (OK1CW)35,210
YO8WW
YT1BD2,448
UR5FEO638

MULTI-OP MULTI-TRANSMITTER All Band

D4C	56,253,582
CN3A	-46,014,627
CR3W	- 39,785,112
PJ2T	31,680,384
KC1XX ·····	28,179,257
K1LZ	27,545,760
K3LR ·····	27,204,912
9A1A	
M6T	23,945,842
4W8X	23,117,280

MULTI-OP SINGLE-TRANSMITTER HIGH POWFR All Band

P33W	23,425,100
UP2L	18,660,543
PJ4A	16,233,714
EW5A	14,011,868
9A7A	13,870,000
IR4X	13,316,674
9A1P	13,290,264
RL3A	12,810,375
RU1A	12,733,560
W2FU	12,563,060

EXPLORER SINGLE-OP HIGH POWERAll Band

RUOLL	1,843,379
S53K	1,502,064
II1P	
OT4A	347,693
9A1DR	347,190
PT1K	··· 248,692
WX85	156,600
E79D	58,408
OK2IT	2,640
VE3VC ······	2,412

LOW POWER All Band

P40L
TM6M 11,628,024
IR6T
SX9V7,850,268
IB9T 7,488,450
DP7D 6,620,688
IO3F 6,052,200
IB9R 5,999,260
E7CW
B0A

EXPLORER MULTI-OP HIGH POWER All Band

RM9A	23,195,385
OT7T	15,067,264
EA4URE	7,166,432
9H6A	5,627,160
YROK······	2,214,630
K8R	2,004,926
YU1ANO	
9M2S	
7E3E	

QRP All Band

DM2M (DK3WE) -----2,512,301

OM0RX ------ 1,763,190

DL1EFW-------1,055,085

MW9W (GW0KRL)------1,046,960

F5NZY-----988,000

ES2MC-----981,783

EA2ESB 511,638

YU1LM (YU1LM/QRP) ------ 481,152

	7 MHz
2	HA4FY ·····
1	DK1VD ·····
8	EA3QP ·····
1	IO5K (IK5TBK) ·······
5	DJ2RG ·····
C	J42T (OK1CDJ)
2	OK1FKD ·····
7	EA2BO
Э	IW3ILM ·····

ROOKIE HIGH POWER

YI3EWW
W9DCT984,400
KC3SVR 434,484
N3AML212,436
EF5T (EA5JDN)106,530
IU0PVM
YF3AQV124
9V1PL110

YOUTH HIGH POWER

RA9P	6,375,600
9A/N4XTT (N4XTT)	
DM7XX	217,620
ZPOX (W3MLJ) ·····	40,368
YT0C ·····	16,530
9A/TA7AZC (TA7AZC)·······	10,710
IU1GHC ·····	6,208
9A/KF0GVX	
JQ7AXT ·····	

21 MHz

W6YA 577,456
W7WA 566,865
N4OX 512,616
N5JJ170,746
KK0U98,381
NX4N
NU5DE (N5KF)12,474
N6IC 969

1.8 MHz

K5RX 168,674
N4XD 16,380
K5UR 12,760
W6RKC 11,032
W8KA 9,664

LOW POWER

D90M	(DS1TUW)	(554,948
HA3GC			308,460
BI3BX ·			228,866
KY4GS			203,528
YL3NU			167,846
KO4TF	K	······································	139,239
AI4B ···			108,272
DD5VL			99,781
W7VC			89,658
DL8AI ·			64,436

LOW POWER

BD4VGZ 1,170,567
DL7PIA 462,672
VE3OMV 426,648
BH6MWC372,500
S56V (S52KJ)224,852
YO8OLY211,302
EI8KW182,520
WO5T180,616
9A/W0AAE171,840
NI9F157,488

14 MHz

N800	567,892
KW9A	239,268
K3GW	- 92,880
КОРК	- 18,144
K7PJT	- 16,698
N7TU	- 15,066
WA4EUL ······	11,520
N3ZZ	4,557

ROOKIE HIGH POWER

N1UR	4,055,296
WW4XX (LZ4AX)	2,967,922
NR3X	2,740,896
K1BX	2,735,280
K5WA	2,154,852
N4TB	1,732,458
K2PO	- 1,518,570
КЗАЈ	1,458,892
N7VM	- 1,253,109
WA7NB ······	1,231,412

CLASSIC HIGH POWER

K02M	4 235 968
1022111	1,200,000
K1DG ·····	4,177,872
YT3D	3,255,549
N2MF	3,175,788
3B9KW (M0CFW)	3,164,498
KP2M (KT3Y)	2,992,564
9Z4A (N2TTA)	····2,985,579
W4CB (W2RU)	2,884,501
9A9R	
K2NV	2,632,104

UNITED STATES SINGLE OPERATOR HIGH POWER All Band

N5DX (@N2QV)11,479,530
K5GN7,468,022
K4ZW6,676,454
NA8V 5,314,518
W9RE5,131,208
K0EJ 5,076,181
N9RV4,871,152
WX0B (AD5Q) 4,738,206
WC1M 4,289,988
K6XX4,273,528

7 MHz K9OM 338,892 WF2W 278,256 N0TT 145,824 N7RK 77,077 WO3Z 53,200 N3RW 1,484

28 MHz

WB4TDH
W0UO
WA7BNM117,504
W6ZL71,060
K8AJS 67,620
N4NM
W2VRK47,229
KM9R45,235
N0UI32,000
KD2P26,623

LOW POWER

(1BX2,735,280
(3AJ1,458,892
Y2NY1,378,944
A1AA
F/OU2I (OZ2I)1,155,921
N1DC1,131,870
NOAX1,096,992
2S4TX
DN4CT 959,576
(3JT 886,580

28 MHz

K1TO	884,642
KU2M	598,686
K8MFO ·····	556,738
K1RM	····· 505,393
K2PS	451,333
W1WEF	373,164
K6AR	277,264
K9BGL ·····	267,168
N5YT	207,360
N6KN	201,488

3.5 MHz

W3BGN187,936
W1HI 62,881
K4JPD29,744
N3QQ20

21 MHz

N4HA80,028
K4AMC 65,100
WN0L33,488
W0ETT
N9HDE29,631
WA5ZKO 22,648
W5JMW15,904
W6DVS 7,242
W9КНН45
<3LO12

14 MHz

W8GOC42,750
AC9PG 5,945
WE9N 4,794
W3EH 3,570
AE5MM 2,016
KB4LA 1,575
N9EDL 64
W1NN 48
KC7CW 35

28 MHz

W5GAI ·····	88,500
KV8Q	50,130
W5LA	27,798
W7USA ······	17,880
W0MB	16,669
N1AIA	
WE6EZ ······	
N0JK	
NR7Z	

28 MHz

KV2K (K2NG)826,794	
N6SS535,608	
W8AV 510,842	
K3EST443,080	
AI5IN345,540	
K4WI311,696	
AA7V 299,735	
W6AX (K6AW)257,040	
K3EW256,381	
K7WP 250,488	

1.8 MHz

W4AX	(K5JR)	 5,031
WN9O		 4,000
K0KT.		 ····2,754
AD4TJ		 540
N8NB		
N9IO		
K4ZRJ·		 6

14 MHz

N4IJ202,0	38
K9RO139,5	86
KA4RRU111,4	10
NW4V61,9	44
AA9D44,6	90
W5/OE5OHO17,6	30
K8TR 6	90
KD9OIN ·····	30

7 MHz

WA3FAE ------ 32,676 W2BEE ------ 490

21 MHz

KF4AV-----24,150 AB8FJ -------300

21 MHz

W9SN	618,273
WW3S	532,614
N4ZR	464,772
N7DD	457,723
W7RN (K5RC)	399,000
K2LE	359,478
W9ILY	271,890
N9TK	259,718
WJ2D	257,580
K7GK	206,415

LOW POWER All Band

KI1G ·····	4,877,414
KS1J ·····	3,056,130
N1EN	2,116,226
NS3T	2,114,775
W3KB	2,078,838
K3QP ·····	1,981,720
AD5A ·····	1,958,730
WE9R ·····	1,943,476
NM2A	·····1,722,042
K1GU ·····	1,665,555

7 MHz

A8R 96,875
NS4T81,510
(1IM75,649
(4FN51,914
G1E44,088
N1API40,756

V4JM 34,689
V8IQ5,040
(1IG2,376

3.5 MHz 1.8 MHz

7 MHz 3.5 MHz

NN1DX ------5,106

14 MHz

K8CX690,432
WU6P369,342
WA2OAX188,784
N4GU129,076
K0DME8,250
W3RMO 805

7 MHz

KA1IS748,960
K7NJ356,001
WX5S
WA3C 313,314
W9PA163,020
NA3M111,564
N4PSE108,468
W3US107,136
N6MA 92,290
W4PG 62,222

28 MHz

N4AO (WC4E) 427,197
KB3WD411,060
W9XT299,250
NT2A179,080
K1IB68,502
AB1J 38,038
KW7Q 36,432
K0XM 29,211
WV7S 23,460
N3RN 19,491

3.5 MHz

KO3T 2,210
NU4M 60
N2WPT48

All Band

QRP

SINGLE OPERATOR ASSISTED HIGH POWER All Band

K5ZD	12,211,100
K1ZZ	9,951,253
N2IC	8,378,024
W8FJ	7,844,064
NN7CW	······ 7,797,770
N3RS ·····	······ 7,527,234
W1KM	······ 7,156,160
K1AR	7,102,578
AB3CX	6,686,153
K3WW	6,640,956

3.5 MHz

N6RO141,120
W3NO127,987
K2AV33,291
W4VIC 17,225
W1EG
W2VQ16,470
N5JB8,778
NI0K3,914
KK7L 377

21 MHz

K40AQ	354,508
K3ZU	340,956
WA1FCN ······	280,000
NN2NN	106,296
KR2H	93,500
W2UP	-87,246
WA8ZNC	70,587
W5TMT	60,260
K3ORC ·····	37,048
N5FL (K5JR)	12,060

QRP All Band

K6JS 446,600
WQ6X260,820
AC2YD 181,188
W2/DL8CX125,487
N5UE119,504
K8ZT 82,368
W7RY 74,520
WO7T 66,768
K2AL
KR4AE 21,008

7 MHz

KM4CH ·····	7,544
K6GHA	·3,936

MULTI-OP MULTI-TRANSMITTER All Band

KC1XX2	8,179,257
K1LZ2	7,545,760
K3LR2	7,204,912
NR4M1	9,757,700
K1TTT1	7,824,265
K9RS1	2,011,760
KORF1	0,888,608
NE3F	3,744,664
K1KP	3,163,112
K1ESE ······	3,087,336

LOW POWER

K1BX2,735,280
K3AJ 1,458,892
N1DC
N0AX1,096,992
K3JT886,580
N2EM732,996
K1MD637,972
W1FJ572,480
N5XE 571,095
N8II 534,674

21 MHz

OK6W (OK1MU) 659,880
SN5X (SP5GRM)
S50R
F6ARC 550,853
OK5D (OK1DTP)527,670
SP5EXA232,800
YL2BJ
DL1DTL159,252
OK1AMF
SN2N (SP2FVN)92,842

28 MHz

K3TW 107,874
W3EK 21,600
AD4IE 288

MULTI-OP SINGLE-TRANSMITTER **HIGH POWER All Band**

W2FU	12,563,060
N4RV	8,844,024
ND7K	8,651,775
NJ4P	6,591,300
AA7A	6,534,814
W9VW	5,690,229
K8AZ	5,587,463
AA9A	5,011,172
K5KG	4,910,475
KQ3F	4,406,864

ROOKIE **HIGH POWER**

W9DCT	984,400
KC3SVR	434,484
N3AML ·····	212,436

YOUTH LOW POWER

WO5T180,616
NI9F157,488
KA4JAM 41,944
NC8R18,404
KE8LQR10,725
KE8RJU10,140
KF0GVX2,107

14 MHz

OH8X (OH6UM)	····1,021,372
DM0A (DK3DM)	817,028
OM5R (OM5WW)	564,045
YT7B	455,007
SV1ME ·····	161,785
YT2ISM ·····	128,544
DL9LM ·····	
YO3IJ	79,206
UZ0U (UY5ZZ)	·······70,246
RC20	

21	Μ	Ηz	

N6MZ ·····	·96,656
NK5G	·12,864

LOW POWER All Band

NTOK 3,559,869	
W3ZGD2,161,797	
WW4LL 1,847,596	
W1FM1,330,938	
K1RQ	
KT3T 782,000	
W4TG618,540	
KOUK75,650	
W8EDU 14,499	

LOW POWER

KY4GS203,528
KO4TFK139,239
AI4B
W7VC
W4YDL41,540
KN6VVQ38,556
KI5PED
N9ATF14,664
KI5PGL7,488
W0ABE 4,984

EUROPE SINGLE OPERATOR HIGH POWER All Band

CR6K (CT1ILT) ······	14,345,736
EF6T (EA3M)	9,257,261
ES7A (ES7GM) ······	8,098,917
DJ5MW ·····	8,026,770
ED7W (EB7A)	7,625,044
IR2Q (IK2PFL) ······	6,956,110
MD4K (G3NKC)	5,425,002
EF1A (EA1X) ······	4,758,486
OZ1AA ·····	4,011,275
UB7K·····	4,007,850

7 MHz

OM2XW647,168
YT7A (YU7GM)624,666
IB8A (IZ8JFL)
IR2R (IZ2EWR)
HA2KMR
R4SA214,472
SM6EAN 156,515
Z35F141,246
OE8TIR112,665
UT5NC93,704

14 MHz K9AXT ------8,600

MULTI-OP TWO-TRANSMITTER All Band

W3LPL21,730,149
K9CT14,277,756
N4WW11,426,220
N2AA
K8LX7,750,336
K2AX
N7DX
N4IQ
W7RM 5,135,156
W2AA5,113,360

CLASSIC **HIGH POWER**

KQ2M 4,235,9	968
K1DG4,177,8	372
N2MF 3,175,7	788
W4CB (W2RU)2,884,5	501
K2NV2,632,1	104
N4AF2,338,0)44
N5AW2,259,4	100
K9MA2,248,2	289
K1IR 1,754,2	298
W2XL1,738,0)62

28 MHz

G9W (M0DXR)	584,040
PA4VHF ·····	391,552
HA8DU	391,461
OH7K (OH7MA)	
RA3XM	340,340
TM5T (F5VKT)	295,826
LZ4TX	294,078
YT1T	254,592
YO2LEA ······	230,715
DL4LBK	208,077

3.5 MHz

IR0A (IS0JHQ/OK8WW)316,020
UT5EL202,188
OE6V (OE6JXA)
SP5ELA
EA4KD 111,274
HA4A (HA4FF)110,700
SM6CPY83,061
EA4IE78,806
UR7UD 77,868
OM0AS70,274

1.8 MHz

404440

LX1NO 134,112
S53O99,235
SP6AEG19,588
OE3SGU13,393
9A/TA7AZC (TA7AZC)10,710
R5WW10,653
UT3QU 3,818
SP6ECA
G3VYI1,316

14 MHz

DL9ZP ·····	176,343
I1XSG ·····	111,864
GJ2A (MJ0ASP) ······	······108,946
S52GO	
IK4MTF	78,982
OM0MW ······	71,173
M2U (M0DHP)	
SP5ENG	·······51,058
YO4CSL ······	
LZ2PS ·····	

QRP All Band

LY9A1,112,342
HA1BC (DL1MAJ)540,540
HG6C (HA6IAM)518,093
DL1JDQ328,485
SEOI (SM0HPL)308,880
HA3GC308,460
OL3M (OK1TGI)262,080
G3YMC239,766
GM4M (GM4UBJ)220,500
OK2HIJ218,304

7 MHz

OK6OK 55,800
SP5CTY34,710
UT7AA
F5MOG31,200
M3F15,060
M0IDL15,036
OK6N (OK2PTS)11,100
ON4ANE
IZ50VP
DK1DSA2,304

LOW POWER All Band

EA2W	5,763,060
IY3A (IZ3EYZ) ······	
LY4L·····	
OR2F	2,742,480
OL5Y	
DL3JAN ·····	2,631,888
HG3N (HA3LN) ·······	2,550,953
ED3Z (EA3DZ)·······	2,125,566
HA7UI	······ 2,097,395
EA3FZT	······1,620,000

7 MHz

28 MHz

LY5G	·· 79,326
US5VX ·····	··61,992
OK1LV	••46,545
EI8FH	32,128
G3L (G3LHJ) ······	30,636
YO3DAC ·····	30,162
9A2EY	29,492
GW4W (GW4EVX)	28,380
IZ2JPN	22,528
OK2MPB	18,734

3.5 MHz

E77Y 71,5	586
SP8OOE	703
YO4BEW	581
EA2AFV9,9	984
UT5UUV	54(
YO8RIX5,7	781
HB9FSV4,4	177
DL6NBC	62
OK6D (OK2TEO)1,0)26
SP4ADZ ······	168

28 MHz

3.5 MHz

OM5NL 118,296
OL5J113,119
DL6KWN96,051
CS2C (OK1RF)82,871
Z33F60,368
OK1AGE46,718
RO5X42,350
S57X40,515
HB9CPS
LY7X (LY3DA) 34,650

21 MHz

HA3JB75,388
LZ2RS70,900
DL2TM 47,610
EA1BP 45,375
HF5WIM29,360
UT5EOX27,470
SP4NKJ17,174
SP2FMN17,020
DF3SM16,632
SQ2RH10,080

1.8 MHz

S51Z 9,065
LY4T7,220
OZ6OM
HA1TI3,395
SP8D1,830

21 MHz

EF3W (EA3CX)	562,400
S50A	531,960
YT9W	339,855
LY5I	187,270
OH3NU ······	89,400
DLORD (DL3CQ)	80,080
DM3CW	68,688
II2M	63,121
RW3X	54,008
YO2IS ······	52,052

1.8 MHz

SM6CNN29,510
YO8DHA 29,450
OK1MNW28,980
OE6JTD13,568
LC9X (LA9XGA)13,250
SP2HMT
S59DR4,864
UT4WT4,641
I3PXN4,408
I1MMN 2,880

14 MHz

YU1RK ······	66,708
SP1C	63,963
DL3NAA ·····	58,240
EA3QC	·19,152
OK1DSA	15,921
SP2HMY ······	15,680
IU1HCC	11,773
EA3BES ······	11,183
YO4BEX	9,747
LY2LF ·····	6,916

SINGLE OPERATOR ASSISTED HIGH POWER All Band

ER1KAA (UT5UDX) ·····	8,856,576
S57K	······ 7,512,750
SN7Q (SP7GIQ)	······ 7,366,250
HG8R (HA8JV) ······	7,182,360
YU5R (YT2AAA) ·······	······7,067,148
UW1M	6,616,666
OK1GK	6,056,028
YL7X (YL2LY)	5,859,396
OH0V (OH6LI) ······	5,777,460
RG6G	5,653,032
	ER1KAA (UT5UDX) S57K HG8R (HA8JV) YU5R (YT2AAA) UW1M OK1GK YL7X (YL2LY) OH0V (OH6LI) RG6G

28 MHz

HA5JI927,654
9A5D (9A5DU) 815,325
F5MUX814,271
LX7I (DK9IP) 745,714
YT1X 703,824
OL9Z (OK2PVF) 655,254
OM0M (OM3CGN)646,032
HA8FK
S50G (S56M) 616,113
II8K (IZ8EPX)601,568

3.5 MHz

21 MHz

HA6FQ ·····	360,882
ED70	359,936
ON6NL ······	358,680
HA8RD ·····	294,196
EU1DX	·····260,750
RD4A ·····	218,232
YU2A	215,307
G8P (G4CLA)	207,350
UT1AA ·····	205,777
FA3IN	176 222

1.8 MHz

SNOR (SQ9IAU)53,947
S57AW47,730
HA8BT26,656
IT9ZZO25,012
SP7AS15,950
RA3RA12,936
SV2DSJ6,912
UA3YCX3,230
OL6B (OK6AB)3,220
R4DI1,102

21 MHz

1.8 MHz

LYOUKR (LY7M)11	1,996
YL3FT	2,723
9A2KD 99	9,372
OT1A (ON4CCP)7	1,995
8S0DX (SM0DSG) 66	5,830
DL6MHW65	5,511
SP9JZU6	1,908
OK1CF60),588
HA8BE58	3,158
SP3HLM52	2,338

14 MHz

OL3R (OK1VWK)	·330,880
YU5M	·321,200
S52OT	·290,160
HG9X (HA9AX)	-286,085
SP1R	·221,270
SN6S (SP6ZC) ······	-198,582
EW1TZ ·····	·173,734
OM3TZZ ·····	-170,982
SP2EWQ ·····	-167,085
UR2Y (US0YW)	·154,904

QRP All Band

DM2M (DK3WE)2,512,301
OM0RX1,763,190
TM7Y (F8BDQ)1,217,152
DL1EFW 1,055,085
MW9W (GW0KRL)1,046,960
F5NZY988,000
ES2MC981,783
EA2ESB511,638
HA5BA488,565
YU1LM (YU1LM/QRP) 481,152

14 MHz		
/T3X	973,440	
9A5Y (9A7DX)	920,368	
HA8A (HA8DZ)	884,439	
HG0Y (HA7GN) ······	857,172	
SQ2A (SQ9UM)	853,332	
OH8L (OH8LQ)	689,751	
HG5E (HA1AH) ······	····· 666,750	
SP4TKR ·····	613,409	
YR9F (YO9FNP)	543,585	
552W	533,732	

LOW POWER All Band

UW5Y (US2YW)4,548,128	
EA5M4,082,210	
SN70 (SP7IVO)	
LZ8E (LZ2BE)3,744,612	
DJ5MO3,717,000	
DK3WW3,486,102	
M6W (G3WW)3,268,904	
DL2NBU3,185,247	
S53V3,149,940	
SP9XCN	

7 MHz

HA7I (HA7JTR) 437,875
Z5ICH252,813
HA6NL251,958
229,886
/T2B199,512
′U1LA······178,029
DF4ZL158,596
SV1BJW150,288
DM5ALL146,400
JT9FJ142,140

28 MHz

UX9Q (UR9QQ)	52,400
M3E (G4CWH)	35,616
SP5PDA ·····	33,820
EA4HWT ·····	28,413
GW9J (GW0GEI)	16,280
OQ4B (ON4BHQ)	15,635
YO8SAO ·····	9,494
DL3NCR ······	4,223
UT0EM ·····	····· 3,700
SP5FKW	·····3,120

28 MHz

HA5PP	502,740
EA1R	466,343
EA7W	446,160
LY7Z	438,429
EA3NO	378,432
EE3O (EA3O)	335,340
M5W	320,850
9A30T (9A5MR)	317,133
S51B	315,534
IT9LKX	299,621

3.5 MHz

Y05AVN	142,738
OE8TED ······	140,450
M3A (M0UKR)	······129,471
DF1MM ·····	124,280
9A2X	123,265
OK1AY	101,952
G6A (G3VDB)	90,540
OM5KM ······	85,595
YU1ED	60,075
EU1AI ·····	56,781

21 MHz

HG1S (HA1DAE) ·······	·· 283,840
LY2OU	109,671
UA4FCO ······	94,829
HG3C (HA3HX) ······	74,366
SP2QOT ·····	68,591
OH1Z (OH1LEG)	35,056
9A5MP	2,318
EC2AFJ	······ 1,830

7 MHz 9A5DX -----------------------------------923,468

YT1A753,280	
MW5B (G3WVG)521,520	
S53X493,317	
G8X (G4FJK)478,009	
OE5TXF (G3TXF)450,576	
HA7A	
SP4JCQ322,014	
RN3BL 287,664	
SP3GTS278,225	

14 MHz

MULTI-OP SINGLE-TRANSMITTER HIGH POWER All Band

EW5A14,011,868
9A7A13,870,000
IR4X
9A1P
RL3A12,810,375
RU1A12,733,560
IR4M12,416,550
HG6N11,777,238
YR8D11,211,427
EA5RS11,098,428

ROOKIE HIGH POWER

YT3EWW1,720,740
EF5T (EA5JDN)106,530
IU0PVM54,560

YOUTH HIGH POWER

9A/N4XTT (N4XTT)349,029
DM7XX217,620
YT0C16,530
9A/TA7AZC (TA7AZC)10,710
IU1GHC6,208
9A/KF0GVX340

7 MHz

HA4FY	64,768
DK1VD	63,630
EA3QP ······	47,310
IO5K (IK5TBK)······	·37,884
DJ2RG ······	·36,498
J42T (OK1CDJ)	35,364
OK1FKD	34,496
EA2BO ·····	·33,000
IW3ILM	·31,990
YU9YAU ·····	29,039

LOW POWER All Band

TM6M	 11,628,024
IR6T …	 -7,863,615
SX9V	 -7,850,268
IB9T	 -7,488,450
DP7D ·	 -6,620,688
IO3F ···	 6,052,200
IB9R …	 5,999,260
E7CW ·	 ··5,935,201
YL4U ··	 -2,948,660
3Z1K	 -2,732,100

LOW POWER

HA3GC ·····	308,460
YL3NU	-167,846
DD5VL	99,781
DL8AI ·····	64,436
DB3MI	47,740
SV1SXV ·····	47,740
OM1HMI ······	43,498
OK3SN ······	42,828
IU2OQK ·····	39,690
M7RDV ·····	23,843

LOW POWER

DL7PIA ······	462,672
S56V (S52KJ)	224,852
YO8OLY	211,302
EI8KW ·····	······182,520
9A/W0AAE	171,840
E70AW	
DK1YH	
YO2NWW ······	
R4WAW ·····	12,480
E74CX	7,600

3.5 MHz

OL4W (OK1IF)83,268
YU1LD
UT4UBZ14,820
DL5SFC
SQ9MR5,508
UW1U (UT7UA)4,716
SP3MKS4,300

MULTI-OP TWO-TRANSMITTER All Band

OM7M18,227,808	
ED1R16,119,943	
RT4F15,010,490	
OL3Z14,538,649	
TK4W13,328,168	
UA4M13,309,376	
OH5Z13,089,760	
HG7T13,088,790	
C37N12,759,768	
SK3W12,354,982	

CLASSIC HIGH POWER

YT3D 3,255,549	
9A9R2,653,696	
JA2FZ2,610,231	
4U1A (YL2QN)2,278,360	
E71A2,140,380	
YL2VW1,919,170	
K0YUT1,793,880	
DK5DQ1,703,988	
OH1VR1,424,160	
DJ2QV 1,410,332	

1.8 MHz

OL1A (OK1CW) 35,210
YO8WW
YT1BD 2,448
UR5FEO 638

MULTI-OP MULTI-TRANSMITTER All Band

9A1A	-25,591,630
M6T	-23,945,842
YT5A	-21,439,968
LZ9W ·····	21,184,488
LN8W	-17,793,849
DF0HQ ······	17,696,448
II2S	17,607,020
TM1A	11,667,366
DP9A ·····	-10,962,348
RO2E ·····	- 4,473,007

LOW POWER

9A1AA	1,324,830
TF/OU2I (OZ2I)	1,155,921
ON4CT	959,576
SP1AEN ·····	836,745
LN7TTT (LA5LJA) ·······	688,576
IK1JJM·····	684,420
F5ICC ·····	625,600
MOXUU	616,760
OL0A (OK1CZ)	564,460
RA7R	564,096

TOP SCORES IN MOST ACTIVE ZONES

Zone 3

K6XX 4,273,528
K6NA3,029,949
WJ9B2,366,026
W7YAQ 1,620,879
N6AA 1,566,692
*K2PO1,518,570
K6NR1,342,088
*N7VM1,253,109
*WA7NB
VA7ST

Zone 4

XL3A (VE3AT) ·······	7,953,288
K5GN	7,468,022
VE5MX	5,675,670
NA8V	5,314,518
W9RE ······	
K0EJ ·····	5,076,181
N9RV	4,871,152
WX0B (AD5Q)	4,738,206
K8GL	·······3,117,912
W0EWD ······	

N5DX (@N2QV)11,479,530 VY2TT (K6LA)9,258,540 K4ZW6,676,454 VE9AA4,688,384 WC1M4,289,988 KQ2M4,240,891 K1DG4,177,872 *N1UR4,055,296

Zone 5

Zone 14

14,345,736
····· 9,257,261
8,026,770
7,625,044
5,763,060
5,425,002
4,758,486
4,011,275
3,875,183
3,648,202

Zone 15

ES7A (ES7GM) ·······	8,098,917
IR2Q (IK2PFL) ······	6,956,110
*IY3A (IZ3EYZ)	5,050,032
OM7K (OM7RU)	3,507,600
LY5R	
YT3D ·····	
*LY4L·····	
4U1A (YL2QN)	······ 2,810,784
*OL5Y	
9A9R	

Zone 16

UB7K	4,007,850
EU4E	
RM2U (RU3UR)	978,870
*UT3UZ	648,186
*RA7R	
RA4PBE	541,352
*US7UK	535,875
*UA1CUR	489,132
*UV1IX	484,188
*R7KX	

Zone 20

P3D (VE3DZ)	8,355,141
*4X7M (4Z4AK)	-6,218,274
C4W (5B4WN)	-4,548,724
LZ5R (LZ5DB)	-1,991,648
*TC3AKSA (TA3X) ······	901,832
*LZ7M (LZ5VK)	860,476
*LZ1VKD ·····	480,055
*LZ5I	·····341,630
LZ4TX ·····	294,078
*YO8BDW	277,190

Zone 25

JE6RPM (JH5GHM) ······	4,980,213
JH4UYB ·····	4,431,863
DS4EOI ·····	····· 2,279,880
JIOVWL	2,202,100
*JI1RXQ	1,994,377
*JA1BJI	····· 1,942,212
JR1IJV ·····	1,495,008
*JJ2JQF/1	1,472,165
JA6BZI ·····	······1,343,092
JH3CUL	1,299,806

WORLD SINGLE OPERATOR ALL BAND High Power

ZF1A	221/14/40	900/21/75	2255/33/104	2112/34/99	3150/35/116	3202/32/105
TI7W	214/12/31	1003/24/78	2203/34/104	1477/35/93	2424/33/102	2583/29/92
CR6K	456/13/53	1058/22/78	1889/30/99	1941/35/104	2496/36/114	2301/32/101
V47T	147/10/17	601/16/68	1776/34/97	1610/35/94	2674/34/104	2239/30/100
8P5A	179/13/33	646/21/71	1336/28/85	1580/33/87	2166/36/110	2563/34/105
EA8RM	90/8/35	654/20/64	1512/25/75	1525/29/86	2152/35/105	2259/31/100
N5DX	187/15/55	686/21/82	1512/32/102	1158/31/100	1332/30/100	1046/29/93
VY2TT	442/12/48	946/16/70	923/23/76	1372/31/81	1122/24/83	1621/25/91
EF6T	187/9/40	962/17/69	1695/28/85	1315/30/83	2268/33/93	1729/27/97
P3D	102/10/36	592/14/54	1119/23/71	1085/28/88	1089/29/83	1533/31/76

Low Power

PZ5CO	12/5/12	354/15/60	985/28/91	1773/35/108	2147/35/117	2475/33/111
V26K	73/8/17	657/14/66	1551/27/92	1710/31/95	2385/32/104	2612/32/105
3V8SS	40/5/19	434/12/54	983/21/76	1064/23/77	1202/27/75	1210/26/86
4X7M	43/6/27	247/10/50	1101/23/70	765/25/76	1070/27/79	1248/29/80
EA2W	61/10/43	493/17/70	1087/25/89	761/28/84	1196/32/106	1076/31/99
IY3A	219/13/53	427/15/64	762/29/86	844/28/95	1330/31/101	422/28/81
ZL7IO	0/0/0	217/19/45	625/27/68	488/28/71	939/30/72	1299/25/60
4L9M	161/9/46	461/15/61	645/26/88	660/26/84	600/22/73	299/25/69
N1UR	36/8/21	259/13/63	465/26/91	436/28/90	582/30/95	750/25/94
LY4L	236/8/44	570/16/61	775/26/78	530/27/77	627/26/86	404/29/85

QRP

KR2Q	6/4/4	61/12/32	323/22/87	196/27/77	346/25/86	368/24/85
LY9A	103/5/26	415/9/50	330/18/68	369/22/63	380/22/65	211/20/66
W1FJ	3/2/2	12/5/8	130/16/52	98/16/47	191/22/69	218/19/62
JH1OGC	2/1/2	54/17/18	120/23/33	80/18/29	227/28/62	226/25/47
HA1BC	30/4/20	198/7/47	148/11/48	138/18/57	169/18/57	159/22/55
W6JTI	4/2/2	22/8/7	113/23/35	136/24/50	183/25/65	167/25/47
HG6C	30/3/15	179/10/48	191/21/64	189/13/56	155/19/55	135/22/53
K8MR	0/0/0	3/2/2	98/13/40	102/13/47	189/20/59	239/19/69
JR4DAH	0/0/0	8/4/4	119/20/32	131/22/41	232/30/59	184/24/47
N3CZ	0/0/0	13/7/11	107/14/51	129/25/66	112/12/44	126/15/46

WORLD SINGLE OPERATOR ASSISTED ALL BAND High Power

РЗАА	147/13/48	803/22/87	1530/30/108	1179/32/118	1754/32/114	1682/32/124
TO7A	116/12/28	619/18/73	1493/30/104	1232/31/96	2749/35/118	2205/34/114
K5ZD	155/15/60	524/24/99	1138/31/120	1084/38/130	1093/37/133	1040/34/129
ED8M	248/11/44	560/17/70	1529/30/94	1273/32/105	1394/35/121	1084/29/101
P44W	85/10/22	436/17/79	869/32/112	923/36/114	1250/35/121	1963/36/126
NP4Z	106/13/39	639/19/78	1131/31/116	1281/36/110	1182/33/114	1590/34/116
ZF5T	139/12/25	744/25/95	656/33/112	782/35/113	1342/38/126	1785/34/122
K1ZZ	78/14/53	419/25/102	1076/35/127	794/38/136	724/37/137	921/33/126
ER1KAA	143/10/40	813/24/94	1265/32/113	1205/32/109	1401/35/118	1435/37/124
N2IC	33/11/21	212/26/76	828/34/122	507/35/116	1320/36/131	1053/33/123

Low Power

KI1G	21/5/8	252/15/75	297/26/100	529/36/120	635/35/129	772/32/122
UN4Q	102/7/29	446/15/63	698/26/82	508/24/75	576/30/95	1054/26/91
UW5Y	110/10/46	500/17/78	755/31/102	677/31/96	901/32/97	642/34/102
AB2E/VP9	137/8/11	582/15/66	689/17/73	607/25/80	1167/26/95	424/20/80
EA5M	43/8/34	364/15/66	758/30/96	661/28/94	847/33/106	808/31/108
SN7O	357/12/60	744/16/75	563/28/97	399/30/104	466/32/117	384/30/118
A71WW	16/5/13	175/11/49	799/25/79	565/28/88	657/29/89	699/26/77
LZ8E	136/10/50	571/19/73	849/32/117	369/28/105	624/35/123	322/32/114
DJ5MO	93/12/55	399/20/79	368/31/106	406/32/108	492/36/117	408/35/119
DK3WW	157/10/52	356/24/93	448/33/116	351/37/119	470/38/130	404/35/135
			QRP			
DM2M	187/12/52	396/16/74	255/28/90	311/27/100	420/33/104	334/32/79
OMORX	72/6/30	258/10/56	407/24/85	484/27/99	330/28/97	221/28/95
TM7Y	63/7/38	228/12/58	234/17/73	217/25/83	237/24/78	238/29/70
DL1EFW	77/7/38	226/14/64	179/12/52	256/22/75	289/23/73	216/23/62
MW9W	108/7/35	264/10/54	215/13/56	217/21/69	248/25/75	250/25/70
F5NZY	58/4/27	323/10/58	239/12/55	340/22/82	205/25/79	148/24/77
ES2MC	74/5/26	183/9/51	202/23/83	199/28/80	256/25/87	178/23/77
EA2ESB	0/0/0	35/6/29	358/17/68	325/15/64	158/14/55	114/13/36
HA5BA	5/1/5	251/7/50	265/14/68	200/12/53	205/15/48	127/18/38
YU1I M	3/2/3	211/9/49	199/16/62	184/14/57	176/16/52	117/20/36

WORLD MULTI-OPERATOR SINGLE-TRANSMITTER High Power

P33W	185/18/74	862/29/102	2137/37/137	1787/39/144	1493/39/147	2453/37/147
UP2L	180/14/61	1179/29/105	1921/37/132	1642/39/136	1188/37/142	1677/34/133
PJ4A	28/9/27	519/22/77	1362/35/117	1464/37/129	1851/37/136	1911/37/135
EW5A	164/21/71	844/30/106	1546/36/134	1396/39/135	1895/38/148	1427/37/139
9A7A	91/19/76	798/31/112	1767/37/138	1057/39/140	1454/39/144	1626/37/138
IR4X	68/16/66	716/29/107	1666/35/131	1027/37/138	1531/39/144	1483/37/138
9A1P	101/14/69	636/29/104	1818/37/136	1295/39/144	1379/39/148	1453/39/138
RL3A	92/21/79	612/33/111	1839/37/135	832/38/140	1846/39/152	1542/37/143
RU1A	156/16/70	607/29/107	1760/37/134	1287/38/140	1759/39/142	1404/38/140
W2FU	63/15/52	580/28/104	1092/34/125	966/37/142	1127/39/137	1303/34/134

Low Power

P40L	39/9/23	421/19/79	1431/32/118	1523/37/122	1739/36/134	2285/36/131
TM6M	141/14/61	866/23/94	1556/33/122	1168/39/142	1302/39/137	1099/36/136
IR6T	79/11/60	619/18/80	1125/35/124	891/38/133	719/37/134	858/36/131
SX9V	108/12/54	563/23/81	1756/33/126	1245/36/130	1037/35/131	911/35/132
IB9T	130/13/58	414/18/77	741/31/103	1065/38/137	1105/36/131	1194/36/132
DP7D	199/12/59	690/21/88	664/31/119	851/35/129	827/36/137	722/33/128
IO3F	141/11/53	663/19/82	1260/33/114	1057/33/112	849/35/123	389/35/120
IB9R	58/10/57	500/21/76	1468/30/105	425/34/122	1060/37/131	835/36/131
E7CW	155/10/56	680/16/76	704/31/109	920/35/125	870/36/131	662/35/119
BOA	8/6/8	200/16/59	963/27/89	475/29/92	886/31/103	904/30/89

WORLD MULTI-OPERATOR TWO-TRANSMITTER High Power

CR3A	396/17/70	1137/29/106	2972/36/134	2882/39/144	3784/39/152	3889/38/148
PJ4K	170/14/30	968/28/99	3133/34/129	2402/37/135	3593/38/140	3374/36/138
W3LPL	115/19/65	1091/28/109	1900/35/130	1410/39/135	2243/38/143	1756/34/142
OM7M	497/17/70	1422/29/107	2173/36/133	1955/38/133	1990/39/141	1607/37/138
PX2A	14/7/11	144/19/48	880/34/110	1627/36/118	2907/39/140	3012/38/143
HQ9X	288/12/25	675/20/73	1567/31/100	2107/35/111	2837/32/119	2591/36/124
ED1R	327/18/73	1179/26/101	2073/36/128	1553/39/138	2377/39/142	1689/38/139
VA2WA	290/13/51	1002/23/96	1735/31/116	1409/38/130	1758/37/131	1547/32/121
RT4F	412/19/71	1047/32/110	2012/36/134	1825/38/136	2019/39/147	1640/36/137
OL3Z	538/18/71	1464/29/108	1871/37/133	1687/38/136	1303/37/138	1241/36/130

WORLD MULTI-OPERATOR MULTI-TRANSMITTER High Power

D4C	872/19/82	2082/28/102	3414/37/135	4375/39/151	4752/39/158	4668/39/149
CN3A	679/18/73	1974/27/96	3211/36/133	4054/39/143	3689/39/145	3615/39/145
CR3W	646/15/64	1889/26/96	3133/37/135	3678/38/143	2799/39/143	2862/37/136
PJ2T	338/16/45	1039/24/90	2597/35/116	3061/38/134	3439/36/120	3216/33/129
KC1XX	447/21/80	1300/26/108	2235/38/133	2245/39/143	2470/38/148	2201/35/144
K1LZ	495/20/76	1251/29/108	2237/37/133	2468/39/144	2251/38/144	2108/36/136
K3LR	260/21/72	1130/30/110	2184/38/142	2198/39/146	2428/39/146	2124/35/141
9A1A	1274/25/91	2047/31/114	3110/37/143	2606/39/145	2679/39/147	1830/37/138
M6T	1006/19/77	2092/28/106	3104/35/140	2733/39/142	2515/39/145	2182/37/140
4W8X	151/18/26	911/29/80	2224/35/126	2020/37/130	2559/37/139	2127/34/125

USA SINGLE OPERATOR ALL BAND High Power

N5DX	187/15/55	686/21/82	1512/32/102	1158/31/100	1332/30/100	1046/29/93
K5GN	65/15/32	179/19/60	1014/32/98	719/33/99	1093/34/106	1142/33/101
K4ZW	42/12/32	372/16/59	999/27/79	860/34/91	702/30/94	1010/28/97
NA8V	89/14/38	318/15/61	534/26/88	737/33/90	754/31/102	750/29/94
W9RE	53/11/32	395/19/67	491/27/85	553/33/94	808/32/110	680/30/92
KOEJ	37/10/24	311/15/54	615/24/74	464/33/87	805/31/100	975/31/100
N9RV	30/12/15	193/23/49	620/29/79	675/32/83	973/35/106	667/29/80
WX0B	22/6/11	104/16/46	876/29/86	439/31/85	1144/33/97	672/31/90
WC1M	35/12/23	129/13/42	1031/27/84	489/26/81	633/26/88	692/23/79
K6XX	19/8/8	178/18/35	860/31/93	420/34/78	661/32/90	722/30/79

Low Power

N1UR	36/8/21	259/13/63	465/26/91	436/28/90	582/30/95	750/25/94
WW4XX	10/5/6	110/14/50	312/29/90	261/30/86	603/31/103	608/28/90
NR3X	25/8/12	144/14/51	297/24/86	349/31/86	434/30/97	555/27/92
K1BX	19/5/11	119/13/51	298/20/75	413/20/70	499/23/73	724/24/79
K5WA	17/6/8	82/16/47	351/21/74	202/26/74	517/29/91	435/26/85
N4TB	3/3/3	71/13/42	236/23/79	260/27/81	324/31/91	369/25/76
K2PO	13/10/9	113/14/17	305/27/58	278/29/85	332/25/67	284/27/55
КЗАЈ	14/6/7	110/12/47	263/14/55	263/21/63	295/26/75	353/21/65
N7VM	6/5/4	29/10/12	215/25/59	275/27/67	357/27/63	401/24/58
WA7NB	0/0/0	19/5/5	236/24/61	134/26/50	370/23/71	553/29/70

QRP

KR2Q	6/4/4	61/12/32	323/22/87	196/27/77	346/25/86	368/24/85
W1FJ	3/2/2	12/5/8	130/16/52	98/16/47	191/22/69	218/19/62
W6JTI	4/2/2	22/8/7	113/23/35	136/24/50	183/25/65	167/25/47
K8MR	0/0/0	3/2/2	98/13/40	102/13/47	189/20/59	239/19/69
N3CZ	0/0/0	13/7/11	107/14/51	129/25/66	112/12/44	126/15/46
KO1H	5/1/1	37/9/21	103/10/43	93/13/46	161/19/65	80/14/34
W6QU	1/1/1	17/8/8	51/14/18	62/19/36	145/27/65	97/23/35
N7RCS	0/0/0	0/0/0	65/13/32	49/13/30	49/16/33	148/19/59
N9SE	0/0/0	0/0/0	11/7/10	43/17/38	74/20/58	84/26/70
NQ2W	0/0/0	16/9/9	45/11/20	40/16/31	87/15/45	54/13/23

USA SINGLE OPERATOR ASSISTED ALL BAND High Power

K5ZD	155/15/60	524/24/99	1138/31/120	1084/38/130	1093/37/133	1040/34/129
K1ZZ	78/14/53	419/25/102	1076/35/127	794/38/136	724/37/137	921/33/126
N2IC	33/11/21	212/26/76	828/34/122	507/35/116	1320/36/131	1053/33/123
W8FJ	108/13/55	364/22/91	776/33/118	563/36/119	871/36/131	751/33/122
NN7CW	30/9/19	411/18/81	992/30/96	721/33/108	751/34/123	1029/33/122
N3RS	56/13/46	358/20/93	696/32/117	655/37/123	661/37/135	863/31/122
W1KM	83/12/46	561/26/88	689/31/103	367/28/94	799/28/105	1041/31/112
K1AR	85/13/53	400/20/93	624/30/112	621/36/120	798/35/127	749/31/119
AB3CX	93/16/49	409/19/82	773/34/111	462/34/109	672/29/116	754/32/120
K3WW	84/15/56	275/23/93	448/31/114	664/36/125	723/33/122	842/31/119

Low Power

KI1G	21/5/8	252/15/75	297/26/100	529/36/120	635/35/129	772/32/122
KS1J	21/8/17	102/10/61	341/22/92	412/28/98	485/28/102	479/27/101
N1EN	7/3/4	101/10/40	355/21/84	366/26/84	328/24/87	369/24/90
NS3T	37/10/17	145/14/64	264/25/91	233/26/87	395/27/105	249/27/92
W3KB	8/3/4	100/14/46	189/21/80	291/28/93	352/27/104	385/30/112
K3QP	0/0/0	52/12/30	236/25/84	386/29/100	310/28/92	381/25/95
AD5A	11/6/7	56/13/26	455/30/102	205/30/82	329/29/99	321/28/93
WE9R	15/8/10	16/10/11	214/28/90	309/30/95	359/30/110	369/31/110
NM2A	0/0/0	117/12/53	237/20/74	282/28/83	225/21/77	434/22/84
K1GU	9/4/4	88/13/55	221/26/92	170/28/88	320/30/100	277/25/90

QRP

K6JS	0/0/0	15/7/6	46/20/31	89/27/46	193/26/73	175/25/58
WQ6X	0/0/0	9/6/5	81/19/31	65/19/32	129/24/43	156/19/32
AC2YD	0/0/0	35/10/27	41/11/31	42/13/30	95/19/58	57/15/38
W2/DL8CX	0/0/0	0/0/0	7/6/6	72/14/47	80/16/62	61/18/50
N5UE	2/2/2	1/1/1	30/9/21	39/14/26	75/14/46	81/22/36
K8ZT	6/2/2	13/7/8	42/12/32	30/18/27	40/16/38	35/15/31
W7RY	0/0/0	6/5/4	19/10/16	26/19/24	54/25/49	40/21/34
WO7T	0/0/0	0/0/0	8/6/6	1/1/1	50/19/40	110/26/57
K2AL	0/0/0	2/2/2	15/5/15	29/10/25	30/11/30	22/12/21
KR4AE	0/0/0	0/0/0	29/8/23	32/12/21	31/15/25	0/0/0

USA MULTI-OPERATOR SINGLE-TRANSMITTER High Power

W2FU	63/15/52	580/28/104	1092/34/125	966/37/142	1127/39/137	1303/34/134
N4RV	88/15/55	352/24/96	772/31/117	604/39/135	1130/38/137	822/34/133
ND7K	30/16/29	203/29/84	1193/36/128	617/39/131	1125/37/136	914/35/125
NJ4P	26/12/19	155/23/78	869/33/121	609/35/122	764/37/127	954/33/122
AA7A	55/14/31	282/29/88	900/35/122	419/37/123	827/35/128	560/35/126
W9VW	26/12/25	148/21/76	820/32/111	662/36/115	606/31/120	716/32/116
K8AZ	43/15/40	208/24/96	556/31/115	531/38/126	765/36/129	366/35/132
AA9A	32/11/29	162/20/76	435/31/107	413/38/121	621/39/133	748/34/127
K5KG	15/7/10	189/19/80	691/31/109	602/34/115	583/37/116	561/32/109
KQ3F	15/9/14	107/14/64	324/29/100	588/35/117	541/32/119	710/33/120

Low Power

NTOK	0/0/0	129/17/65	336/29/104	344/32/103	417/31/114	788/30/114
W3ZGD	4/4/3	86/14/45	247/29/98	306/30/98	370/30/114	294/31/105
WW4LL	0/0/0	31/11/25	418/25/87	223/28/87	335/26/98	399/25/96
W1FM	7/4/4	64/14/46	180/16/73	208/24/85	241/26/93	260/24/94
K1RQ	10/3/3	73/12/44	144/19/69	138/21/69	159/21/75	200/24/75
КТЗТ	4/4/4	51/11/29	183/16/71	105/21/55	160/25/79	217/29/81
W4TG	0/0/0	76/9/37	171/16/65	178/20/69	169/19/67	64/16/48
KOUK	5/3/3	6/5/4	9/5/7	31/9/22	77/19/37	68/22/34
W8EDU	0/0/0	0/0/0	0/0/0	6/3/6	17/10/13	53/16/33

USA MULTI-OPERATOR TWO-TRANSMITTER High Power

W3LPL	115/19/65	1091/28/109	1900/35/130	1410/39/135	2243/38/143	1756/34/142
К9СТ	71/15/48	442/27/95	1394/36/131	1070/37/133	1679/37/140	1406/35/133
N4WW	51/13/41	414/24/99	1032/34/128	697/39/132	1675/38/135	1084/36/136
N2AA	109/16/58	391/21/91	1019/32/119	955/38/127	1248/36/133	1097/32/126
K8LX	39/10/18	248/19/72	878/31/111	940/37/116	1164/36/125	859/29/100
K2AX	99/13/47	207/19/78	515/29/111	695/37/123	983/33/127	728/34/122
N7DX	16/7/7	231/23/54	774/34/113	899/36/115	1109/36/116	768/31/90
N4IQ	44/10/25	294/18/76	1038/29/114	673/35/114	789/32/116	720/29/109
W7RM	20/10/11	178/18/56	772/34/102	556/34/111	889/36/119	643/27/70
W2AA	73/13/38	173/16/59	740/26/96	497/34/104	868/29/105	701/29/95

USA MULTI-OPERATOR MULTI-TRANSMITTER High Power

KC1XX	447/21/80	1300/26/108	2235/38/133	2245/39/143	2470/38/148	2201/35/144
K1LZ	495/20/76	1251/29/108	2237/37/133	2468/39/144	2251/38/144	2108/36/136
K3LR	260/21/72	1130/30/110	2184/38/142	2198/39/146	2428/39/146	2124/35/141
NR4M	267/19/63	955/29/109	1872/37/132	1802/38/138	1950/36/130	1599/34/135
K1TTT	367/20/73	911/29/104	1475/32/119	1704/38/142	1788/38/141	1281/32/119
K9RS	100/14/55	411/22/88	1063/31/115	1136/38/131	1368/37/136	1140/34/129
KORF	90/16/39	268/22/67	1124/36/127	1302/38/138	1650/38/136	856/35/116
NE3F	37/9/26	147/14/59	440/28/97	378/33/96	864/30/112	567/26/86
K1KP	6/4/4	106/14/54	567/26/89	495/27/86	442/26/94	512/24/94
K1ESE	39/11/27	114/13/52	404/28/99	423/29/100	376/32/114	413/28/111

EUROPE SINGLE OPERATOR ALL BAND High Power

CR6K	456/13/53	1058/22/78	1889/30/99	1941/35/104	2496/36/114	2301/32/101
EF6T	187/9/40	962/17/69	1695/28/85	1315/30/83	2268/33/93	1729/27/97
ES7A	193/11/48	765/24/89	1280/32/103	1261/33/99	1432/36/115	1105/33/110
DJ5MW	143/11/46	691/16/74	1350/32/97	1324/31/99	1199/35/111	945/33/105
ED7W	28/6/19	461/17/61	1244/24/87	1395/29/81	1754/33/102	1532/29/93
IR2Q	264/10/51	723/16/61	1296/29/86	996/25/79	1422/33/98	854/30/84
MD4K	336/10/47	965/21/71	1094/28/86	1090/25/88	1204/32/89	794/25/72
EF1A	162/11/42	522/14/50	1015/21/64	869/19/63	1444/27/67	1337/26/70
OZ1AA	190/9/44	461/14/64	667/27/87	507/21/79	894/30/82	822/29/85
UB7K	63/8/27	493/16/66	869/24/72	759/25/67	1277/31/97	740/26/66

Low Power

EA2W	61/10/43	493/17/70	1087/25/89	761/28/84	1196/32/106	1076/31/99
IY3A	219/13/53	427/15/64	762/29/86	844/28/95	1330/31/101	422/28/81
LY4L	236/8/44	570/16/61	775/26/78	530/27/77	627/26/86	404/29/85
OR2F	163/11/48	500/15/75	391/26/80	351/22/65	464/30/94	619/28/92
OL5Y	227/9/45	548/14/61	536/26/88	378/21/67	595/28/78	314/28/65
DL3JAN	208/9/48	535/13/65	406/24/86	498/27/81	495/30/89	413/32/84
HG3N	128/8/40	484/11/57	489/22/82	394/24/71	653/29/99	413/29/91
TF/OU2I	0/0/0	160/8/38	491/17/62	586/18/54	1023/24/70	927/21/68
ED3Z	77/8/34	270/13/57	461/22/71	503/18/61	653/21/62	389/20/62
HA7UI	121/8/44	605/16/68	474/26/87	469/25/69	313/26/88	358/28/92

QRP

LY9A	103/5/26	415/9/50	330/18/68	369/22/63	380/22/65	211/20/66
HA1BC	30/4/20	198/7/47	148/11/48	138/18/57	169/18/57	159/22/55
HG6C	30/3/15	179/10/48	191/21/64	189/13/56	155/19/55	135/22/53
DL1JDQ	12/4/10	189/10/49	190/16/57	106/13/42	129/19/48	71/14/23
SEOI	65/3/24	160/9/41	194/13/56	162/11/41	152/14/46	76/11/28
HA3GC	2/1/2	131/6/44	184/16/60	115/14/42	128/17/43	89/16/30
OL3M	41/4/21	199/8/48	126/12/42	104/10/40	95/13/35	124/19/36
G3YMC	11/2/8	73/4/29	150/11/45	149/12/45	139/12/47	146/14/38
GM4M	13/2/9	33/5/20	109/9/41	170/12/45	178/12/47	98/15/35
OK2HIJ	36/5/25	181/8/46	136/14/55	100/9/43	59/12/28	57/15/28

EUROPE SINGLE OPERATOR ASSISTED ALL BAND High Power

ER1KAA	143/10/40	813/24/94	1265/32/113	1205/32/109	1401/35/118	1435/37/124
S57K	216/13/64	724/23/94	1525/35/128	780/32/114	775/35/122	773/36/114
SN7Q	166/14/63	649/27/101	815/33/113	1014/34/119	927/34/125	630/37/130
HG8R	151/12/60	258/24/90	1096/36/124	574/35/119	1091/37/137	686/37/132
YU5R	226/12/58	631/20/87	825/35/116	910/37/125	826/34/124	836/36/130
UW1M	155/12/56	563/18/82	1558/34/111	860/29/101	949/32/119	1169/34/121
OK1GK	233/10/48	409/19/74	767/33/104	722/32/111	857/33/119	789/36/127
YL7X	188/14/61	528/25/95	851/34/120	610/36/121	851/37/135	466/35/133
OH0V	262/13/51	543/20/74	891/32/103	804/31/93	1057/32/101	784/36/116
RG6G	111/15/53	361/24/88	861/32/109	765/33/103	879/34/119	994/31/118

Low Power

UW5Y	110/10/46	500/17/78	755/31/102	677/31/96	901/32/97	642/34/102
EA5M	43/8/34	364/15/66	758/30/96	661/28/94	847/33/106	808/31/108
SN7O	357/12/60	744/16/75	563/28/97	399/30/104	466/32/117	384/30/118
LZ8E	136/10/50	571/19/73	849/32/117	369/28/105	624/35/123	322/32/114
DJ5MO	93/12/55	399/20/79	368/31/106	406/32/108	492/36/117	408/35/119
DK3WW	157/10/52	356/24/93	448/33/116	351/37/119	470/38/130	404/35/135
M6W	252/11/49	480/15/68	479/22/84	515/29/97	571/29/106	442/29/95
DL2NBU	154/11/49	353/16/69	372/28/94	447/30/99	505/35/115	461/33/110
S53V	76/10/42	212/18/71	308/30/99	371/29/96	536/33/120	575/36/121
SP9XCN	137/6/38	714/17/73	456/25/93	483/31/103	401/30/111	416/33/115

QRP

DM2M	187/12/52	396/16/74	255/28/90	311/27/100	420/33/104	334/32/79
OMORX	72/6/30	258/10/56	407/24/85	484/27/99	330/28/97	221/28/95
TM7Y	63/7/38	228/12/58	234/17/73	217/25/83	237/24/78	238/29/70
DL1EFW	77/7/38	226/14/64	179/12/52	256/22/75	289/23/73	216/23/62
MW9W	108/7/35	264/10/54	215/13/56	217/21/69	248/25/75	250/25/70
F5NZY	58/4/27	323/10/58	239/12/55	340/22/82	205/25/79	148/24/77
ES2MC	74/5/26	183/9/51	202/23/83	199/28/80	256/25/87	178/23/77
EA2ESB	0/0/0	35/6/29	358/17/68	325/15/64	158/14/55	114/13/36
HA5BA	5/1/5	251/7/50	265/14/68	200/12/53	205/15/48	127/18/38
YU1LM	3/2/3	211/9/49	199/16/62	184/14/57	176/16/52	117/20/36

EUROPE MULTI-OPERATOR SINGLE-TRANSMITTER High Power

EW5A	164/21/71	844/30/106	1546/36/134	1396/39/135	1895/38/148	1427/37/139
9A7A	91/19/76	798/31/112	1767/37/138	1057/39/140	1454/39/144	1626/37/138
IR4X	68/16/66	716/29/107	1666/35/131	1027/37/138	1531/39/144	1483/37/138
9A1P	101/14/69	636/29/104	1818/37/136	1295/39/144	1379/39/148	1453/39/138
RL3A	92/21/79	612/33/111	1839/37/135	832/38/140	1846/39/152	1542/37/143
RU1A	156/16/70	607/29/107	1760/37/134	1287/38/140	1759/39/142	1404/38/140
IR4M	74/17/72	828/28/108	1839/36/132	898/38/141	1584/37/133	1178/37/136
HG6N	233/13/66	901/26/100	1550/36/135	1411/37/133	1271/35/138	1162/37/135
YR8D	164/16/68	980/28/104	1363/35/130	1369/38/138	1518/39/143	1021/36/132
EA5RS	96/15/63	308/26/101	1297/34/134	1221/38/139	1418/39/143	1303/39/142

Low Power

TM6M	141/14/61	866/23/94	1556/33/122	1168/39/142	1302/39/137	1099/36/136
IR6T	79/11/60	619/18/80	1125/35/124	891/38/133	719/37/134	858/36/131
SX9V	108/12/54	563/23/81	1756/33/126	1245/36/130	1037/35/131	911/35/132
IB9T	130/13/58	414/18/77	741/31/103	1065/38/137	1105/36/131	1194/36/132
DP7D	199/12/59	690/21/88	664/31/119	851/35/129	827/36/137	722/33/128
IO3F	141/11/53	663/19/82	1260/33/114	1057/33/112	849/35/123	389/35/120
IB9R	58/10/57	500/21/76	1468/30/105	425/34/122	1060/37/131	835/36/131
E7CW	155/10/56	680/16/76	704/31/109	920/35/125	870/36/131	662/35/119
YL4U	235/9/50	863/20/81	668/29/100	486/33/108	358/31/119	397/25/110
3Z1K	214/11/45	536/23/88	425/30/102	457/29/96	345/30/107	260/35/104

EUROPE MULTI-OPERATOR TWO-TRANSMITTER High Power

OM7M	497/17/70	1422/29/107	2173/36/133	1955/38/133	1990/39/141	1607/37/138
ED1R	327/18/73	1179/26/101	2073/36/128	1553/39/138	2377/39/142	1689/38/139
RT4F	412/19/71	1047/32/110	2012/36/134	1825/38/136	2019/39/147	1640/36/137
OL3Z	538/18/71	1464/29/108	1871/37/133	1687/38/136	1303/37/138	1241/36/130
TK4W	707/12/62	1741/29/101	2177/35/117	1114/32/112	1934/36/123	1573/33/120
UA4M	363/18/70	901/29/107	1994/36/135	1522/38/140	1729/38/144	1580/34/139
OH5Z	252/15/61	1007/28/103	1554/36/135	1788/39/142	1908/39/148	1082/36/138
HG7T	352/13/62	1270/26/102	1840/36/131	1474/37/136	1772/37/143	999/36/132
C37N	340/11/50	1270/20/85	1871/30/109	2042/36/121	2189/37/124	1326/29/104
SK3W	434/15/67	973/28/104	1279/36/132	1344/39/137	2108/38/144	1090/37/134

EUROPE MULTI-OPERATOR MULTI-TRANSMITTER High Power

9A1A	1274/25/91	2047/31/114	3110/37/143	2606/39/145	2679/39/147	1830/37/138
M6T	1006/19/77	2092/28/106	3104/35/140	2733/39/142	2515/39/145	2182/37/140
YT5A	993/17/74	1854/31/109	2959/37/141	2480/39/142	2548/39/148	1674/37/134
LZ9W	880/17/71	1649/35/119	3049/37/134	2699/39/134	2142/38/141	2016/37/134
LN8W	823/15/68	1711/29/105	2416/36/135	2323/39/133	2082/38/128	1681/38/137
DF0HQ	903/17/70	1694/27/104	2575/38/143	2160/37/133	1593/38/144	1511/37/136
II2S	769/14/66	1679/27/100	2339/35/130	2392/39/141	2049/38/134	1595/36/123
TM1A	644/11/57	1668/22/92	2324/32/108	1819/37/130	1354/33/125	994/33/121
DP9A	621/14/67	1267/28/103	1938/34/129	1586/38/133	1196/36/126	570/36/123
RO2E	130/10/50	464/26/91	657/34/126	634/36/126	567/36/140	673/34/138